Bioinformatics and Systems Medicine Laboratory
General information | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

9447

Name

AIM2

Synonymous

PYHIN4;absent in melanoma 2;AIM2;absent in melanoma 2

Definition

interferon-inducible protein AIM2

Position

1q22

Gene type

protein-coding

Source

Count: 3; TAG,UniProt,Generif

Sentence

Abstract

The putative tumor suppressor AIM2 is frequently affected by different genetic alterations in microsatellite unstable colon cancers.

Mismatch repair (MMR) deficiency is a major mechanism of colorectal tumorigenesis that is observed in 10-15% of sporadic colorectal cancers and those associated with the hereditary nonpolyposis colorectal cancer (HNPCC) syndrome. MMR deficiency leads to the accumulation of mutations mainly at short repetitive sequences termed microsatellites, constituting the high level microsatellite instability (MSI-H) phenotype. In recent years, several genes have been described that harbor microsatellites in their coding region (coding microsatellites, cMS) and are frequently affected by mutations in MMR-deficient cancers. However, evidence for a functional role of most of the known cMS-containing genes is missing, and further analyses are needed for a better understanding of MSI tumorigenesis. Here, we examined in detail alterations of the absent in melanoma 2 (AIM2) gene that shows a high frequency of cMS frameshift mutations in MSI-H colorectal, gastric, and endometrial tumors. AIM2 belongs to the HIN-200 family of interferon (IFN)-inducible proteins, its role in colon carcinogenesis, however, is unknown. Sequencing of the entire coding region of AIM2 revealed a high frequency of frameshift and missense mutations in primary MSI-H colon cancers (9/20) and cell lines (9/15). Biallelic AIM2 alterations were detected in 8 MSI-H colon tumors and cell lines. In addition, AIM2 promoter hypermethylation conferred insensitivity to IFN-gamma-induced AIM2 expression of three MSI-H colon cancer cell lines. These results demonstrate that inactivation of AIM2 by genetic and epigenetic mechanisms is frequent in MMR-deficient colorectal cancers, thus suggesting that AIM2 is a mutational target relevant for the progression of MSI-H colorectal cancers.CI - (c) 2007 Wiley-Liss, Inc.

"Biochemical and growth regulatory activities of the HIN-200 family member and putative tumor suppressor protein, AIM2."

The human HIN-200 family member AIM2 was originally identified in a screen for suppressors of melanoma tumorigenicity following introduction of chromosome 6 into the UACC903 human melanoma cell line. Although the AIM2 protein contained many of the conserved structural motifs common to other HIN-200 proteins, the biochemical characteristics of AIM2 and the ability of overexpressed AIM2 to phenocopy the effect of introduction of chromosome 6 in the UACC903 cells had not been assessed. Herein we demonstrated that AIM2 was localised within the nucleus of transfected or interferon-treated human cells. In addition, AIM2 could homodimerise via the amino-terminal (PAAD/DAPIN) region and heterodimerise with the related IFI 16 protein. However, overexpressed AIM2 did not significantly affect the growth or survival of UACC903 cells or another human melanoma cell line. These data indicate that AIM2 has many of the biochemical and structural characteristics of HIN-200 proteins, however, its expression is not sufficient to induce a tumor-suppressor-like phenotype.

The importance of HIN-200 proteins in disease now is beginning to be understood as they appear to be involved in autoimmunity and may act as tumor suppressor proteins.

The HIN-200 family was initially grouped together based on their hemopoietic expression, interferon-inducibility, nuclear localization, and characteristic 200 amino-acid domains. In this review, we performed a comprehensive search of genome databases and determined the location of previously characterized and predicted genes within the human, mouse, and rat HIN-200 loci. Several novel proteins were predicted in the mouse and rat. We also discuss recent advances in our understanding of this family of proteins and highlight the most important findings. In addition to a role in interferon biology, there is now good evidence supporting a role for these proteins as regulators of cell proliferation and differentiation. The activity of HIN-200 proteins is not restricted to the hemopoietic system as they are expressed and can function in a variety of other cells and tissues. The importance of HIN-200 proteins in disease now is beginning to be understood as they appear to be involved in autoimmunity and may act as tumor suppressor proteins.

Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved
Site Policies | State of Texas