Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

2042

Name

EPHA3

Synonymous

EK4|ETK|ETK1|HEK|HEK4|TYRO4;EPH receptor A3;EPHA3;EPH receptor A3

Definition

EPH-like kinase 4|TYRO4 protein tyrosine kinase|eph-like tyrosine kinase 1|ephrin type-A receptor 3|human embryo kinase 1|tyrosine-protein kinase receptor ETK1

Position

3p11.2

Gene type

protein-coding

Title

Abstract

Cancer somatic mutations disrupt functions of the EphA3 receptor tyrosine kinase through multiple mechanisms.

The Eph receptor tyrosine kinases make up an important family of signal transduction molecules that control many cellular processes, including cell adhesion and movement, cell shape, and cell growth. All of these are important aspects of cancer progression, but the relationship between Eph receptors and cancer is complex and not fully understood. genetic screens of tumor specimens from cancer patients have revealed somatic mutations in many Eph receptors. The most highly mutated Eph receptor is EphA3, but its functional role in cancer is currently not well established. Here we show that many EphA3 mutations identified in lung, colorectal, and hepatocellular cancers, melanoma, and glioblastoma impair kinase activity or ephrin ligand binding and/or decrease the level of receptor cell surface localization. These results suggest that EphA3 has ephrin- and kinase-dependent tumor suppressing activities, which are disrupted by somatic cancer mutations.

Effects of cancer-associated EPHA3 mutations on lung cancer.

BACKGROUND: cancer genome sequencing efforts recently identified EPHA3, which encodes the EPHA3 receptor tyrosine kinase, as one of the most frequently mutated genes in lung cancer. Although receptor tyrosine kinase mutations often drive oncogenic conversion and tumorigenesis, the oncogenic potential of the EPHA3 mutations in lung cancer remains unknown. METHODS: We used immunoprecipitation, western blotting, and kinase assays to determine the activity and signaling of mutant EPHA3 receptors. A mutation-associated gene signature was generated from one large dataset, mapped to another training dataset with survival information, and tested in a third independent dataset. EPHA3 expression levels were determined by quantitative reverse transcription-polymerase chain reaction in paired normal-tumor clinical specimens and by immunohistochemistry in human lung cancer tissue microarrays. We assessed tumor growth in vivo using A549 and H1299 human lung carcinoma cell xenografts in mice (n = 7-8 mice per group). Tumor cell proliferation was measured by bromodeoxyuridine incorporation and apoptosis by multiple assays. All P values are from two-sided tests. RESULTS: At least two cancer-associated EPHA3 somatic mutations functioned as dominant inhibitors of the normal (wild type) EPHA3 protein. An EPHA3 mutation-associated gene signature that was associated with poor patient survival was identified. Moreover, EPHA3 gene copy numbers and/or expression levels were decreased in tumors from large cohorts of patients with lung cancer (eg, the gene was deleted in 157 of 371 [42%] primary lung adenocarcinomas). Reexpression of wild-type EPHA3 in human lung cancer lines increased apoptosis by suppression of AKT activation in vitro and inhibited the growth of tumor xenografts (eg, for H1299 cells, mean tumor volume with wild-type EPHA3 = 437.4 mm(3) vs control = 774.7 mm(3), P < .001). Tumor-suppressive effects of wild-type EPHA3 could be overridden in trans by dominant negative EPHA3 somatic mutations discovered in patients with lung cancer. CONCLUSION: cancer-associated EPHA3 mutations attenuate the tumor-suppressive effects of normal EPHA3 in lung cancer.

')