General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 2066 |
Name | ERBB4 |
Synonymous | ALS19|HER4|p180erbB4;erb-b2 receptor tyrosine kinase 4;ERBB4;erb-b2 receptor tyrosine kinase 4 |
Definition | avian erythroblastic leukemia viral (v-erb-b2) oncogene homolog 4|human epidermal growth factor receptor 4|proto-oncogene-like protein c-ErbB-4|receptor tyrosine-protein kinase erbB-4|tyrosine kinase-type cell surface receptor HER4|v-erb-a erythroblastic |
Position | 2q33.3-q34 |
Gene type | protein-coding |
Title |
Abstract |
Formation of Neu/ErbB2-induced mammary tumors is unaffected by loss of ErbB4. | The four members of the ErbB family of receptor tyrosine kinases are involved in development and tumorigenesis of the mammary gland. Whereas the epidermal growth factor receptor, ErbB2 and ErbB3 are positively associated with various cancers, clinical studies of ErbB4 in breast cancer are contradictory. Results from tissue culture analyses and some clinical studies suggested that ErbB4 is either a tumor suppressor or is a negative regulator of ErbB2-driven tumors. Neu-Cre-ErbB4(flox/null) mice in which ErbB4 was inactivated by Cre-lox-mediated recombination in the mammary gland developed MMTV-Neu-driven mammary tumors with a similar latency period to mice with one or two wild-type ErbB4 alleles. Moreover, there was no difference in the histologies of tumors that developed, nor in the propensity to form lung metastases. Taken together these results suggest that ErbB4 is not a potent, highly penetrant tumor suppressor, nor is it a factor in Neu-mediated tumorigenesis in this model. |
Phosphorylation of ErbB4 on tyrosine 1056 is critical for ErbB4 coupling to inhibition of colony formation by human mammary cell lines. | In many studies, ErbB4 expression in breast tumor samples correlates with a favorable patient prognosis. Similarly, ErbB4 signaling is coupled to cellular differentiation and growth arrest in a variety of model systems. However, in some studies, ErbB4 expression in breast tumor samples correlates with poor outcome. Likewise, studies using some human mammary tumor cell lines suggest that ErbB4 is coupled to malignant phenotypes. Thus, the roles that ErbB4 plays in human breast cancer are still poorly defined. Here we demonstrate that a constitutively active ErbB4 mutant (ErbB4-Q646C) inhibits colony formation on plastic by two human mammary tumor cell lines (SKBR3 and MCF7) and by the MCF10A immortalized human mammary cell line, but does not inhibit colony formation by the MDA-MB-453 and T47D human mammary tumor cell lines. ErbB4 kinase activity is necessary for ErbB4 function and phosphorylation of ErbB4 Tyr1056 is necessary and appears to be sufficient for ErbB4 function. The inhibition of colony formation by MCF10A cells is accompanied by growth arrest but not cell death. These data suggest that ErbB4 behaves as a mammary tumor suppressor and that loss of ErbB4 coupling to growth arrest may be an important event in mammary tumorigenesis. |
Systems-level analysis of ErbB4 signaling in breast cancer: a laboratory to clinical perspective. | Although expression of the ErbB4 receptor tyrosine kinase in breast cancer is generally regarded as a marker for favorable patient prognosis, controversial exceptions have been reported. Alternative splicing of ErbB4 pre-mRNAs results in the expression of distinct receptor isoforms with differential susceptibility to enzymatic cleavage and different downstream signaling protein recruitment potential that could affect tumor progression in different ways. ErbB4 protein expression from nontransfected cells is generally low compared with ErbB1 in most cell lines, and much of our knowledge of the role of ErbB4 in breast cancer is derived from the ectopic overexpression of the receptor in non-breast-derived cell lines. One of the primary functions of ErbB4 in vivo is in the maturation of mammary glands during pregnancy and lactation induction. Pregnancy and extended lactation durations have been correlated with reduced risk of breast cancer, and the role of ErbB4 in tumor suppression may therefore be linked with its role in lactation. Most reports are consistent with a role for ErbB4 in reversing growth stimuli triggered by other ErbB family members during puberty. In this report, we provide a systems-level examination of several reports highlighting the seemingly opposing roles of ErbB4 in breast cancer and potential explanations for the discrepancies and draw the conclusion that future studies examining the function of ErbB4 in breast cancer should also take into account the pregnancy history, lactation status, and hormone supplementation or ablation history of the patient from whom the tumor or tumor cells are derived. |