General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 406918 |
Name | MIR129-2 |
Synonymous | MIR-129b|MIRN129-2|mir-129-2;microRNA 129-2;MIR129-2;microRNA 129-2 |
Definition | hsa-mir-129-2 |
Position | 11p11.2 |
Gene type | ncRNA |
Title |
Abstract |
miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. | Resistance to fluoropyrimidine-based chemotherapy is the major reason for the failure of advanced colorectal cancer (CRC) treatment. The lack of ability of tumor cells to undergo apoptosis after genotoxic stress is the key contributor to this intrinsic mechanism. Mounting evidence has demonstrated that non-coding microRNAs (miRNAs) are crucial regulators of gene expression, in particular, under acute genotoxic stress. However, there is still limited knowledge about the role of miRNAs in apoptosis. In this study, we discovered a novel mechanism mediated by microRNA-129 (miR-129) to trigger apoptosis by suppressing a key anti-apoptotic protein, B-cell lymphoma 2 (BCL2). Ectopic expression of miR-129 promoted apoptosis, inhibited cell proliferation and caused cell-cycle arrest in CRC cells. The intrinsic apoptotic pathway triggered by miR-129 was activated by cleavage of caspase-9 and caspase-3. The expression of miR-129 was significantly downregulated in CRC tissue specimens compared with the paired normal control samples. More importantly, we demonstrated that miR-129 enhanced the cytotoxic effect of 5-fluorouracil both in vitro and in vivo. These results suggest that miR-129 has a unique potential as a tumor suppressor and a novel candidate for developing miR-129-based therapeutic strategies in CRC. |
Growth inhibitory effects of three miR-129 family members on gastric cancer. | Reduced expression of microRNA-129 (miR-129) has been reported in several types of tumor cell lines as well as in primary tumor tissues. However, little is known about how miR-129 affects cell proliferation in gastric cancer. Here, we show that all miR-129 family members, miR-129-1-3p, miR-129-2-3p, and miR-129-5p, are down-regulated in gastric cancer cell lines compared with normal gastric epithelial cells. Furthermore, using the real-time cell analyzer assay to observe the growth effects of miR-129 on gastric cancer cells, we found that all three mature products of miR-129 showed tumor suppressor activities. To elucidate the molecular mechanisms underlying down-regulation of miR-129 in gastric cancer, we analyzed the effects of miR-129 mimics on the cell cycle. We found that increased miR-129 levels in gastric cancer cells resulted in significant G0/G1 phase arrest. Interestingly, we showed that cyclin dependent kinase 6 (CDK6), a cell cycle-associated protein involved in G1-S transition, was a target of miR-129. We also found that expression of the sex determining region Y-box 4 (SOX4) was inversely associated with that of miR-129-2-3p and miR-129-5p but not of miR-129-1-3p. Together, our data indicate that all miR-129 family members, not only miR-129-5p, as previously thought, play an important role in regulating cell proliferation in gastric cancer. |