General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 406937 |
Name | MIR145 |
Synonymous | MIRN145|miR-145|miRNA145;microRNA 145;MIR145;microRNA 145 |
Definition | hsa-mir-145 |
Position | 5q32 |
Gene type | ncRNA |
Title |
Abstract |
Mechanism of growth inhibition by MicroRNA 145: the role of the IGF-I receptor signaling pathway. | microRNA 145 (miR145) has been proposed as a tumor suppressor. It was previously shown that miR145 targets the 3 UTR of the insulin receptor substrate-1 (IRS-1) and dramatically inhibits the growth of colon cancer cells. miR145 also targets the type 1 insulin-like growth factor receptor (IGF-IR). We show here that an IRS-1 lacking its 3 UTR is no longer down-regulated by miR145 and rescues colon cancer cells from miR145-induced inhibition of growth. An IGF-IR resistant to miR145 (again by elimination of its 3 UTR) is not down-regulated by miR145 but fails to rescue colon cancer cells from growth inhibition. These and other results, taken together, indicate that down-regulation of IRS-1 plays a significant role in the tumor suppressor activity of miR145. |
miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. | Understanding the consequences of miR-145 reintroduction in human breast cancer (BC) could reveal its tumor-suppressive functions and may disclose new aspects of BC biology. Therefore, we characterized the effects of miR-145 re-expression in BC cell lines by using proliferation and apoptosis assays. As a result, we found that miR-145 exhibited a pro-apoptotic effect, which is dependent on TP53 activation, and that TP53 activation can, in turn, stimulate miR-145 expression, thus establishing a death-promoting loop between miR-145 and TP53. We also found that miR-145 can downregulate estrogen receptor-alpha (ER-alpha) protein expression through direct interaction with two complementary sites within its coding sequence. In conclusion, we described a tumor suppression function of miR-145 in BC cell lines, and we linked miR-145 to TP53 and ER-alpha. Moreover, our findings support a view that miR-145 re-expression therapy could be mainly envisioned in the specific group of patients with ER-alpha-positive and/or TP53 wild-type tumors. |
Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. | microRNAs (miRNAs) are small noncoding RNAs which play essential roles in many important biological processes. Therefore, their dysfunction is associated with a variety of human diseases, including cancer. Increasing evidence shows that miRNAs can act as oncogenes or tumor suppressors, and although there is great interest in research into these cancer-associated miRNAs, little is known about them. In this study, we performed a comprehensive analysis of putative human miRNA oncogenes and tumor suppressors. We found that miRNA oncogenes and tumor suppressors clearly show different patterns in function, evolutionary rate, expression, chromosome distribution, molecule size, free energy, transcription factors, and targets. For example, miRNA oncogenes are located mainly in the amplified regions in human cancers, whereas miRNA tumor suppressors are located mainly in the deleted regions. miRNA oncogenes tend to cleave target mRNAs more frequently than miRNA tumor suppressors. These results indicate that these two types of cancer-associated miRNAs play different roles in cancer formation and development. Moreover, the patterns identified here can discriminate novel miRNA oncogenes and tumor suppressors with a high degree of accuracy. This study represents the first large-scale bioinformatic analysis of human miRNA oncogenes and tumor suppressors. Our findings provide help for not only understanding of miRNAs in cancer but also for the specific identification of novel miRNAs as miRNA oncogenes and tumor suppressors. In addition, the data presented in this study will be valuable for the study of both miRNAs and cancer. |
Comparative study of anti-oncogenic microRNA-145 in canine and human malignant melanoma. | microRNA-145 (miRNA-145; miR-145) is aberrantly expressed in most of human cancers and plays a significant role in carcinogenesis and cancer progression. In the current study, we focused on how miR-145 plays a role in canine and human malignant melanomas. MiR-145 was significantly downregulated in canine malignant melanoma tissues and canine melanoma cell lines, as well as human melanoma cell lines tested. The ectopic expression of miR-145 showed a significant growth inhibition in both canine and human melanoma cells tested, and the effect was achieved partly by suppressing c-MYC in canine melanoma LMeC and in human melanoma A2058 and Mewo cells. At the same time, a suppressive tendency on cell migration in canine melanoma KMeC cells and significant suppression of cell migration in human melanoma A2058 cells by suppressing FASCIN1 were also found. These findings suggest that miR-145 acts as a tumor suppressor in both canine and human malignant melanomas. |
MiR-145 is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1. | microRNAs (miRNAs) are a family of small non-coding RNA molecules that regulate gene expression at post-transcriptional levels. Previous studies have shown that miR-145 is downregulated in human ovarian cancer; however, the roles of miR-145 in ovarian cancer growth and invasion have not been fully demonstrated. In the present study, Northern blot and qRT-PCR analysis indicate that miR-145 is downregulated in ovarian cancer tissues and cell lines, as well as in serum samples of ovarian cancer, compared to healthy ovarian tissues, cell lines and serum samples. Functional studies suggest that miR-145 overexpression leads to the inhibition of colony formation, cell proliferation, cell growth viability and invasion, and the induction of cell apoptosis. In accordance with the effect of miR-145 on cell growth, miR-145 suppresses tumor growth in vivo. MiR-145 is found to negatively regulate P70S6K1 and MUC1 protein levels by directly targeting their 3UTRs. Importantly, the overexpression of p70S6K1 and MUC1 can restore the cell colony formation and invasion abilities that are reduced by miR-145, respectively. MiR-145 expression is increased after 5-aza-CdR treatment, and 5-aza-CdR treatment results in the same phenotype as the effect of miR-145 overexpression. Our study suggests that miR-145 modulates ovarian cancer growth and invasion by suppressing p70S6K1 and MUC1, functioning as a tumor suppressor. Moreover, our data imply that miR-145 has potential as a miRNA-based therapeutic target for ovarian cancer. |
The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. | Our recent study of microRNA (miRNA) expression signature of prostate cancer (PCa) has revealed that the microRNA-143/145 (miR-143/145) cluster is significantly downregulated in cancer tissues, suggesting that these cluster miRNAs are candidate tumor suppressors. The aim of this study was to investigate the functional significance of the miR-143/145 cluster in PCa cells and to identify novel targets regulated by these cluster miRNAs in PCa. Restoration of miR-143 or miR-145 in PCa cell lines (PC3 and DU145) revealed that these miRNAs significantly inhibited cancer cell migration and invasion. gene expression data and in silico analysis demonstrated that Golgi membrane protein 1 (GOLM1) resembling a type II golgi transmembrane protein was a potential target of miR-143/145 cluster target gene. gene expression studies and luciferase reporter assays showed that GOLM1 was directly regulated by the miR-143/145 cluster. Silencing of GOLM1 resulted in significant inhibition of cell migration and invasion in PCa cells. Furthermore, the expression of GOLM1 was upregulated in cancer tissues by immunohistochemistry. Loss of the tumor-suppressive miR-143/145 cluster enhanced cancer cell migration and invasion in PCa through directly regulating GOLM1. Our data on target genes regulated by the tumor-suppressive miR-143/145 cluster provide new insights into the potential mechanisms of PCa oncogenesis and metastasis. |
MicroRNA 145 may play an important role in uveal melanoma cell growth by potentially targeting insulin receptor substrate-1. | BACKGROUND: microRNAs (miRNAs) contribute to tumorigenesis by acting as either oncogenes or tumor suppressor genes. In this study, we investigated the role of miR-145 in the pathogenesis of uveal melanoma. METHODS: expression profiles of miRNAs in uveal melanoma were performed using Agilent miRNA array. Quantitative real-time polymerase chain reaction was used to screen the expression levels of miR-145 in normal uveal tissue, uveal melanoma tissue, and uveal melanoma cell lines. Lenti-virus expression system was used to construct MUM-2B and OCM-1 cell lines with stable overexpression of miR-145. Cell proliferation, cell cycle, and cell apoptosis of these miR-145 overexpression cell lines were examined by MTT assay and flow cytometry respectively. The target genes of miR-145 were predicted by bioinformatics and confirmed using a luciferase reporter assay. The expression of insulin-like growth factor-1 receptor (IGF-1R), insulin receptor substrate-1 (IRS-1) proteins was determined by Western blotting analysis. IRS-1 was knocked down in OCM-1 cells. TUNEL, BrdU, and flow cytometry assay were performed in IRS-1 knocked down OCM-1 cell lines to analyze its function. RESULTS: Forty-seven miRNAs were up regulated in uveal melanoma and 61 were down regulated. miR-145 expression was significantly lower in uveal melanoma sample and the cell lines were compared with normal uveal sample. Overexpression of miR-145 suppressed cell proliferation by blocking the G1 phase entering S phase in uveal melanoma cells, and promoted uveal melanoma cell apoptosis. IRS-1 was identified as a potential target of miR-145 by dual luciferase reporter assay. Knocking down of IRS-1 had similar effect as overexpression of miR-145. CONCLUSION: miR-145 might act as a tumor suppressor in uveal melanoma, and downregulation of the target IRS-1 might be a potential mechanism. |
MiR-145 inhibits osteosarcoma cells proliferation and invasion by targeting ROCK1. | microRNAs (miRNAs) contribute to the development and progression of various types of human cancers. The aim of this study was to study the role of miR-145 and to identify its functional target gene in osteosarcoma (OS) cells. We found that miR-145 was reduced in OS tissues and cell lines. Enforced expression of miR-145 inhibited cell proliferation, migration, and invasion abilities of MG-63 cells. Furthermore, we revealed that Rho-associated protein kinase 1 (ROCK1) was a target of miR-145 in OS. Finally, we found that silencing of ROCK1 performed similar effects with miR-145 in MG-63 cells, and ROCK1 was inversely correlated with miR-145 in OS tissues. Collectively, these data indicate that miR-145 may act as a tumor suppressor and contributes to the progression of OS through targeting ROCK1. |