Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

406957

Name

MIR181C

Synonymous

MIRN181C|mir-181c;microRNA 181c;MIR181C;microRNA 181c

Definition

hsa-mir-181c

Position

19p13.13

Gene type

ncRNA

Title

Abstract

Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets.

microRNAs (miRNAs) are small noncoding RNAs which play essential roles in many important biological processes. Therefore, their dysfunction is associated with a variety of human diseases, including cancer. Increasing evidence shows that miRNAs can act as oncogenes or tumor suppressors, and although there is great interest in research into these cancer-associated miRNAs, little is known about them. In this study, we performed a comprehensive analysis of putative human miRNA oncogenes and tumor suppressors. We found that miRNA oncogenes and tumor suppressors clearly show different patterns in function, evolutionary rate, expression, chromosome distribution, molecule size, free energy, transcription factors, and targets. For example, miRNA oncogenes are located mainly in the amplified regions in human cancers, whereas miRNA tumor suppressors are located mainly in the deleted regions. miRNA oncogenes tend to cleave target mRNAs more frequently than miRNA tumor suppressors. These results indicate that these two types of cancer-associated miRNAs play different roles in cancer formation and development. Moreover, the patterns identified here can discriminate novel miRNA oncogenes and tumor suppressors with a high degree of accuracy. This study represents the first large-scale bioinformatic analysis of human miRNA oncogenes and tumor suppressors. Our findings provide help for not only understanding of miRNAs in cancer but also for the specific identification of novel miRNAs as miRNA oncogenes and tumor suppressors. In addition, the data presented in this study will be valuable for the study of both miRNAs and cancer.

MiR-181c modulates the proliferation, migration, and invasion of neuroblastoma cells by targeting Smad7.

microRNAs (miRNAs) function as key regulators of gene expression in various cancers. In this study, the aim is to explore the roles and regulation mechanism of miR-181c in neuroblastoma (NB) cells. We found that miR-181c was downregulated in metastatic NB tissues, compared with primary NB tissues. Then functional studies indicated that miR-181c overexpression inhibited NB cell proliferation, migration, and invasion, while miR-181c inhibition increased cell proliferation, migration, and invasion. EGFP reporter assay, real-time polymerase chain reaction and western blot analysis validated that Smad7 was a direct target of miR-181c. MiR-181c reduced Smad7 expression at both mRNA and protein levels. Finally, functional assays showed that the effect of Smad7 knockdown on cells was similar to that of miR-181c overexpression. Importantly, Smad7 overexpression could restore the antitumor effects that were induced by miR-181c. In conclusion, our results demonstrated that miR-181c inhibits NB cell growth and metastasis-related traits through the suppression of Smad7, functioning as a tumor suppressor. Moreover, our results suggested that miR-181c may serve as an important therapeutic target for NB patients.

')