General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 4851 |
Name | NOTCH1 |
Synonymous | AOS5|AOVD1|TAN1|hN1;notch 1;NOTCH1;notch 1 |
Definition | Notch homolog 1, translocation-associated|neurogenic locus notch homolog protein 1|translocation-associated notch protein TAN-1 |
Position | 9q34.3 |
Gene type | protein-coding |
Title |
Abstract |
Notch1 functions as a tumor suppressor in mouse skin. | Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin. |
Photoexposition discriminates Notch 1 expression in human cutaneous squamous cell carcinoma. | The Notch signaling pathway may play opposing roles in cancer. It can be oncosuppressive or protumoral, depending on the cellular and tissue context. In skin cancer, Notch 1 expression is downregulated, thus supporting the hypothesis of an oncosuppressive role in cutaneous carcinomas. However, as members of the Notch family undergo downregulation upon exposure to UV irradiation, we wondered whether Notch 1 expression in skin carcinomas may be governed by additional factors, including UV exposure. We investigated the expression of Notch 1 and its ligands, Jagged 1, Jagged 2 and Delta-like 1, by immunohistochemistry in a series of premalignant and invasive cutaneous carcinomas, including 4 solar keratoses, 5 Bowens disease, 5 squamous cell carcinomas on sun-exposed skin, 6 squamous cell carcinomas on sun-protected genital skin and 14 basal cell carcinomas of different histotypes (nodular, superficial type, sclerodermiform/infiltrating and baso-squamous). expression of Notch 1 was decreased in solar keratoses and invasive squamous cell carcinomas localized on sun-exposed skin. In contrast, marked Notch 1 staining was observed in extragenital Bowens disease as well as in genital (penile) human papilloma virus-related in situ and invasive squamous cell carcinomas. A diffuse Notch 1 staining was detected in nodular and superficial basal cell carcinomas while sclerodermiform/infiltrating and baso-squamous basal cell carcinomas showed a low to absent Notch 1 expression. Jagged 1, Jagged 2 and Delta-like 1 proteins were expressed in all tissues examined. Present findings show divergent expression of Notch 1 in skin cancer, depending on anatomical site and tumor histotype. Thus, whereas in UV-related squamous cell photocarcinogenesis Notch 1 downregulation could mirror a tumor suppressor function of the receptor, in sun-protected squamous cell carcinomas Notch 1 was upregulated. Furthermore, Notch 1 expression was minimal in basal cell carcinoma subtypes correlated with risk of recurrence (sclerodermiform/infiltrating and baso-squamous) in comparison with nodular and superficial types. |
Arsenite suppresses Notch1 signaling in human keratinocytes. | Arsenic is a well-known human skin carcinogen whose mechanism of action remains to be elucidated. In this work using cultured human epidermal cells, arsenite suppressed accumulation of the transcriptionally active intracellular domain of Notch1. The cells responded to an active peptide from the Notch1 ligand, Jagged1, with increased levels of differentiation marker mRNAs and decreased colony-forming ability. Arsenite suppressed Jagged1 effects and expression of Jagged1 mRNA as well. Moreover, exposure of the cells to a gamma-secretase inhibitor prevented Notch1 processing, decreased cell size and differentiation marker expression, and increased proliferative potential, all effects that occur with arsenite treatment. Thus, arsenite action in suppressing keratinocyte differentiation while maintaining germinative capability could be due to inhibition of Notch1 signaling subsequent to ligand binding. This work also revealed that such arsenite action depends upon epidermal growth factor receptor kinase activity. These findings may help to explain how arsenite, by decreasing generation of the tumor suppressor Notch1, contributes to skin carcinogenesis. |
Notch tumor suppressor function. | cancer development results from deregulated control of stem cell populations and alterations in their surrounding environment. Notch signaling is an important form of direct cell-cell communication involved in cell fate determination, stem cell potential and lineage commitment. The biological function of this pathway is critically context dependent. Here we review the pro-differentiation role and tumor suppressing function of this pathway, as revealed by loss-of-function in keratinocytes and skin, downstream of p53 and in cross-connection with other determinants of stem cell potential and/or tumor formation, such as p63 and Rho/CDC42 effectors. The possibility that Notch signaling elicits a duality of signals, involved in growth/differentiation control and cell survival will be discussed, in the context of novel approaches for cancer therapy. |
Notch tumor suppressor function. | cancer development results from deregulated control of stem cell populations and alterations in their surrounding environment. Notch signaling is an important form of direct cell-cell communication involved in cell fate determination, stem cell potential and lineage commitment. The biological function of this pathway is critically context dependent. Here we review the pro-differentiation role and tumor suppressing function of this pathway, as revealed by loss-of-function in keratinocytes and skin, downstream of p53 and in cross-connection with other determinants of stem cell potential and/or tumor formation, such as p63 and Rho/CDC42 effectors. The possibility that Notch signaling elicits a duality of signals, involved in growth/differentiation control and cell survival will be discussed, in the context of novel approaches for cancer therapy. |
Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. | Notch1 is a proto-oncogene in several organs. In the skin, however, Notch1 deletion leads to tumor formation, suggesting that Notch1 is a "tumor suppressor" within this context. Here we demonstrate that, unlike classical tumor suppressors, Notch1 loss in epidermal keratinocytes promotes tumorigenesis non-cell autonomously by impairing skin-barrier integrity and creating a wound-like microenvironment in the skin. Using mice with a chimeric pattern of Notch1 deletion, we determined that Notch1-expressing keratinocytes in this microenvironment readily formed papillomas, showing that Notch1 was insufficient to suppress this tumor-promoting effect. Accordingly, loss of other Notch paralogues that impaired the skin barrier also predisposed Notch1-expressing skin to tumorigenesis, demonstrating that the tumor-promoting effect of Notch1 loss involves a crosstalk between barrier-defective epidermis and its stroma. |
[Inhibitory effects of Notch1 overexpression on proliferation and neuroendocrine marker expression in a small cell lung cancer cell line]. | OBJECTIVE: To investigate the effects of Notch1 signal activation on proliferation and neuroendocrine marker expression in small cell lung cancer cells. METHODS: The active form of Notch1 (NIC) was over-expressed in NCI-H446 cells by constitutive transfection and a stable transfected cell line was established. Proliferation of NCI-H446 cells was analysed by MTT assay on 6 successive days. expression of neuroendocrine markers (CgA, NSE) was observed by immunohistochemistry and Western blot analysis. Statistical analysis was conducted to compare the results in cells with NIC transfected and those in control groups. RESULTS: MTT assay showed that absorbance (A) of cells overexpressing Notch1 was significantly depressed compared with that of the control cells (P<0.05). Immunohistochemistry of CgA showed that PUs in the NIC transfected group, sham group and negative control group were 8.81 +/- 0.77, 38.10 +/- 1.55, 38.97 +/- 0.80, respectively, the former one was significantly smaller than that of the latter two (P<0.01). Immunohistochemistry of NSE showed that PUs in the NIC transfected group, sham group and negative control group were 7.21 +/- 0.59, 28.25 +/- 1.46, 30.57 +/- 1.31, respectively, the former one was significantly smaller than that in the latter two (P<0.01). Western blot analysis showed that the gray scales of CgA in the NIC transfected group and sham group were 0.54 +/- 0.03 and 0.99 +/- 0.05, respectively, (gray scale of the negative control set as 1.00), the former one was significantly smaller than that of the other two groups (P<0.01). The gray scales of NSE in the NIC transfected group and sham group were 0.43 +/- 0.02 and 1.07 +/- 0.09, respectively (gray scale of the negative control set as 1.00), the former one was significantly smaller than that of the other two groups (P<0.01). CONCLUSION: Notch1 may behave as a tumor suppressor in small cell lung cancer. Notch1 signal activation can inhibit the proliferation and neuroendocrine marker expression in small cell lung cancer cells, suggesting that Notch1 gene could be a new target for small cell lung cancer treatment and probable relief of paraneoplastic syndrome. |
Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. | K-ras is the most commonly mutated oncogene in pancreatic cancer and its activation in murine models is sufficient to recapitulate the spectrum of lesions seen in human pancreatic ductal adenocarcinoma (PDAC). Recent studies suggest that Notch receptor signaling becomes reactivated in a subset of PDACs, leading to the hypothesis that Notch1 functions as an oncogene in this setting. To determine whether Notch1 is required for K-ras-induced tumorigenesis, we used a mouse model in which an oncogenic allele of K-ras is activated and Notch1 is deleted simultaneously in the pancreas. Unexpectedly, the loss of Notch1 in this model resulted in increased tumor incidence and progression, implying that Notch1 can function as a tumor suppressor gene in PDAC. |
Functional interactions between Lmo2, the Arf tumor suppressor, and Notch1 in murine T-cell malignancies. | LMO2 is a target of chromosomal translocations in T-cell tumors and was activated by retroviral vector insertions in T-cell tumors from X-SCID patients in gene therapy trials. To better understand the cooperating genetic events in LMO2-associated T-cell acute lymphoblastic leukemia (T-ALL), we investigated the roles of Arf tumor suppressor loss and Notch activation in murine models of transplantation. Lmo2 overexpression enhanced the expansion of primitive DN2 thymocytes, eventually facilitating the stochastic induction of clonal CD4(+)/CD8(+) malignancies. Inactivation of the Arf tumor suppressor further increased the self-renewal capacity of the primitive, preleukemic thymocyte pool and accelerated the development of aggressive, Lmo2-induced T-cell lympholeukemias. Notch mutations were frequently detected in these Lmo2-induced tumors. The Arf promoter was not directly engaged by Lmo2 or mutant Notch, and use of a mouse model in which activation of a mutant Notch allele depends on previous engagement of the Arf promoter revealed that Notch activation could occur as a subsequent event in T-cell tumorigenesis. Therefore, Lmo2 cooperates with Arf loss to enhance self-renewal in primitive thymocytes. Notch mutation and Arf inactivation appear to independently cooperate in no requisite order with Lmo2 overexpression in inducing T-ALL, and all 3 events remained insufficient to guarantee immediate tumor development. |
Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. | Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. To explore the genetic origins of this cancer, we used whole-exome sequencing and gene copy number analyses to study 32 primary tumors. Tumors from patients with a history of tobacco use had more mutations than did tumors from patients who did not use tobacco, and tumors that were negative for human papillomavirus (HPV) had more mutations than did HPV-positive tumors. Six of the genes that were mutated in multiple tumors were assessed in up to 88 additional HNSCCs. In addition to previously described mutations in TP53, CDKN2A, PIK3CA, and HRAS, we identified mutations in FBXW7 and NOTCH1. Nearly 40% of the 28 mutations identified in NOTCH1 were predicted to truncate the gene product, suggesting that NOTCH1 may function as a tumor suppressor gene rather than an oncogene in this tumor type. |