Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

5468

Name

PPARG

Synonymous

CIMT1|GLM1|NR1C3|PPARG1|PPARG2|PPARgamma;peroxisome proliferator-activated receptor gamma;PPARG;peroxisome proliferator-activated receptor gamma

Definition

PPAR-gamma|nuclear receptor subfamily 1 group C member 3|peroxisome proliferator-activated nuclear receptor gamma variant 1

Position

3p25

Gene type

protein-coding

Title

Abstract

Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer.

Tumors may escape from immune control by the induction of CD11b(+)Gr-1(+) myeloid suppressor cells in the spleen. In this study, we demonstrate that this cell population can be subdivided into a CD11b(hi)Gr-1(int)SSC(lo)Ly6G(neg)M-CSFR(int) immature monocytic fraction and a CD11b(hi+)Gr-1(hi)SSC(hi)Ly6G(hi)M-CSFR(neg) granulocytic fraction. Upon in vitro culture, the monocytic CD11b(+)Gr-1(+) cell fraction is sufficient for cytotoxic T lymphocyte (CTL) suppression, which is linked to the gradual differentiation of these monocytic cells into mature F4/80(+) CD68(+) macrophages. These CTL-suppressive macrophages are alternatively activated (M2), as demonstrated by the expression of known and novel M2 signature genes. In search of M2-associated genes involved in the suppressive activity, it is shown that stimulation of peroxisome proliferator-activated receptor gamma (PPARgamma) and inhibition of phospholipase A(2) (PLA(2)) activity cooperate to alleviate CTL suppression. Of importance, purified tumor-associated macrophages display a similar M2 phenotype and are suppressive for antitumor CTLs, via a mechanism that can be almost completely reversed by PPARgamma ligands. Overall, our data identify PLA(2) and especially PPARgamma as new potential therapeutic targets to subvert macrophage-mediated CTL suppression in cancer.

Malignant transformation of DMBA/TPA-induced papillomas and nevi in the skin of mice selectively lacking retinoid-X-receptor alpha in epidermal keratinocytes.

Retinoid-X-receptor alpha (RXRalpha), a member of the nuclear receptor (NR) superfamily, is a ligand-dependent transcriptional regulatory factor. It plays a crucial role in NR signalling through heterodimerization with some 15 NRs. We investigated the role of RXRalpha and its partners on mouse skin tumor formation and malignant progression upon topical DMBA/TPA treatment. In mutants selectively ablated for RXRalpha in keratinocytes, epidermal tumors increased in size and number, and frequently progressed to carcinomas. As keratinocyte-selective peroxisome proliferator-activated receptor gamma (PPARgamma) ablation had similar effects, RXRalpha/PPARgamma heterodimers most probably mediate epidermal tumor suppression. Keratinocyte-selective RXRalpha-null and vitamin-D-receptor null mice also exhibited more numerous dermal melanocytic growths (nevi) than control mice, but only nevi from RXRalpha mutant mice progressed to invasive human-melanoma-like tumors. Distinct RXRalpha-mediated molecular events appear therefore to be involved, in keratinocytes, in cell-autonomous suppression of epidermal tumorigenesis and malignant progression, and in non-cell-autonomous suppression of nevi formation and progression. Our study emphasizes the crucial role of keratinocytes in chemically induced epidermal and melanocytic tumorigenesis, and raises the possibility that they could play a similar role in UV-induced tumorigenesis, notably in nevi formation and progression to melanoma.

Inhibition of peroxisome proliferator-activated receptor gamma promotes tumorigenesis through activation of the beta-catenin / T cell factor (TCF) pathway in the mouse intestine.

Although peroxisome proliferator-activated receptor gamma (PPARgamma) is strongly expressed in the intestinal epithelium, the role of PPARgamma in intestinal tumorigenesis has not yet been elucidated. To address this issue, we investigated the effect of PPARgamma inhibition and its mechanism on intestinal tumorigenesis using a selective antagonist, T0070907. We treated Apc(Min/+) mice and carcinogen-induced colon cancer model C57BL/6 mice with T0070907 and counted the number of spontaneous polyps and aberrant crypt foci and observed cell proliferation and beta-catenin protein in the colon epithelium. To investigate its mechanism, the changes of beta-catenin/TCF (T cell factor) transcriptional activity and location of beta-catenin induced by T0070907 were investigated in the colon cancer cell lines. T0070907 promoted polyp formation in the small intestine of Apc(Min/+) mice and aberrant crypt foci in the colon of C57BL/6 mice. PPARgamma inhibition promoted cell proliferation and increased expressions of the c-myc and cyclin D1 genes and the beta-catenin protein in the colon epithelium. In vitro, cell proliferation was promoted, but it was inhibited by the transfection of dominant-negative Tcf4. T0070907 increased beta-catenin/TCF transcriptional activity and beta-catenin protein in the cytsol and nucleus, but relatively decreased it on the cell membrane. PPARgamma antagonist promotes tumorigenesis in the small intestine and colon through stimulation of epithelial cell proliferation. beta-Catenin contributes to the promotion of tumorigenesis by PPARgamma antagonist due to activation of TCF/LEF (lymphoid enhancer factor) transcriptional factor.

Inhibitory role of peroxisome proliferator-activated receptor gamma in hepatocarcinogenesis in mice and in vitro.

Although peroxisome proliferator-activated receptor gamma (PPARgamma) agonist have been shown to inhibit hepatocellular carcinoma (HCC) development, the role of PPARgamma in hepatocarcinogenesis remains unclear. We investigated the therapeutic efficacy of PPARgamma against HCC. PPARgamma-deficient (PPARgamma(+/-)) and wild-type (PPARgamma(+/+)) littermates were used in a diethylnitrosamine (DEN)-induced HCC model and treated with PPARgamma agonist (rosiglitazone) or the vehicle alone for 8 months. The effects of PPARgamma on HCC cell growth and apoptosis were examined using PPARgamma-expressing adenovirus (Ad-PPARgamma). PPARgamma(+/-) mice were more susceptible to DEN-induced HCC than PPARgamma(+/+) mice (94% versus 62%, P < 0.05), and rosiglitazone significantly reduced the incidence of HCC in PPARgamma(+/+) mice (vehicle 62% versus treatment 24%, P < 0.01), but not in PPARgamma(+/-) mice, indicating that PPARgamma suppresses hepatocellular carcinogenesis. A pronounced expression of PPARgamma was observed in a HCC cell line (Hep3B) infected with Ad-PPARgamma. Such induction markedly suppressed HCC cell viability (P < 0.01). Further, Hep3B infection with Ad-PPARgamma revealed a decreased proportion of cells in S-phase (12.92% versus 11.58%, P < 0.05), with arrest at G(2)/M phase (38.2% versus 55.68%, P < 0.001), and there was concomitant phosphorylation of the key G(2)/M phase inhibitors cdc25C and cdc2. PPARgamma overexpression increased cell apoptosis (21.47% versus 35.02%, P < 0.01), mediated by both extrinsic (Fas and tumor necrosis factor-alpha) and intrinsic (caspase-9, caspase-3, caspase-7, and poly[ADP-ribose] polymerase) pathways. Moreover, PPARgamma directly induced a putative tumor suppressor gene, growth differentiation factor-15. CONCLUSION: Loss of one PPARgamma allele is sufficient to enhance susceptibility to HCC. PPARgamma suppresses tumor cell growth through reducing cell proliferation and inducing G(2)/M phase arrest, apoptosis, and up-regulating growth differentiation factor-15. Thus, PPARgamma acts as a tumor-suppressor gene in the liver.

')