Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

55294

Name

FBXW7

Synonymous

AGO|CDC4|FBW6|FBW7|FBX30|FBXO30|FBXW6|SEL-10|SEL10|hAgo|hCdc4;F-box and WD repeat domain containing 7, E3 ubiquitin protein ligase;FBXW7;F-box and WD repeat domain containing 7, E3 ubiquitin protein ligase

Definition

F-box and WD-40 domain protein 7 (archipelago homolog, Drosophila)|F-box protein FBW7|F-box protein FBX30|F-box protein SEL-10|F-box/WD repeat-containing protein 7|archipelago|homolog of C elegans sel-10

Position

4q31.3

Gene type

protein-coding

Title

Abstract

The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation.

Myc proteins regulate cell growth and division and are implicated in a wide range of human cancers. We show here that Fbw7, a component of the SCF(Fbw7) ubiquitin ligase and a tumor suppressor, promotes proteasome-dependent c-Myc turnover in vivo and c-Myc ubiquitination in vitro. Phosphorylation of c-Myc on threonine-58 (T58) by glycogen synthase kinase 3 regulates the binding of Fbw7 to c-Myc as well as Fbw7-mediated c-Myc degradation and ubiquitination. T58 is the most frequent site of c-myc mutations in lymphoma cells, and our findings suggest that c-Myc activation is one of the key oncogenic consequences of Fbw7 loss in cancer. Because Fbw7 mediates the degradation of cyclin E, Notch, and c-Jun, as well as c-Myc, the loss of Fbw7 is likely to elicit profound effects on cell proliferation during tumorigenesis.

The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia.

Recent studies have shown that activating mutations of NOTCH1 are responsible for the majority of T cell acute lymphoblastic leukemia (T-ALL) cases. Most of these mutations truncate its C-terminal domain, a region that is important for the NOTCH1 proteasome-mediated degradation. We report that the E3 ligase FBW7 targets NOTCH1 for ubiquitination and degradation. Our studies map in detail the amino acid degron sequence required for NOTCH1-FBW7 interaction. Furthermore, we identify inactivating FBW7 mutations in a large fraction of human T-ALL lines and primary leukemias. These mutations abrogate the binding of FBW7 not only to NOTCH1 but also to the two other characterized targets, c-Myc and cyclin E. The majority of the FBW7 mutations were present during relapse, and they were associated with NOTCH1 HD mutations. Interestingly, most of the T-ALL lines harboring FBW7 mutations were resistant to gamma-secretase inhibitor treatment and this resistance appeared to be related to the stabilization of the c-Myc protein. Our data suggest that FBW7 is a novel tumor suppressor in T cell leukemia, and implicate the loss of FBW7 function as a potential mechanism of drug resistance in T-ALL.

FBXW7/hCDC4 is a general tumor suppressor in human cancer.

The ubiquitin-proteasome system is a major regulatory pathway of protein degradation and plays an important role in cellular division. Fbxw7 (or hCdc4), a member of the F-box family of proteins, which are substrate recognition components of the multisubunit ubiquitin ligase SCF (Skp1-Cdc53/Cullin-F-box-protein), has been shown to mediate the ubiquitin-dependent proteolysis of several oncoproteins including cyclin E1, c-Myc, c-Jun, and Notch. The oncogenic potential of Fbxw7 substrates, frequent allelic loss in human cancers, and demonstration that mutation of FBXW7 cooperates with p53 in mouse tumorigenesis have suggested that Fbxw7 could function as a tumor suppressor in human cancer. Here, we carry out an extensive genetic screen of primary tumors to evaluate the role of FBXW7 as a tumor suppressor in human tumorigenesis. Our results indicate that FBXW7 is inactivated by mutation in diverse human cancer types with an overall mutation frequency of approximately 6%. The highest mutation frequencies were found in tumors of the bile duct (cholangiocarcinomas, 35%), blood (T-cell acute lymphocytic leukemia, 31%), endometrium (9%), colon (9%), and stomach (6%). Approximately 43% of all mutations occur at two mutational "hotspots," which alter Arg residues (Arg465 and Arg479) that are critical for substrate recognition. Furthermore, we show that Fbxw7Arg465 hotspot mutant can abrogate wild-type Fbxw7 function through a dominant negative mechanism. Our study is the first comprehensive screen of FBXW7 mutations in various human malignancies and shows that FBXW7 is a general tumor suppressor in human cancer.

The Fbxw7/hCdc4 tumor suppressor in human cancer.

Fbxw7/hCdc4 is a member of the F-box family of proteins, which function as interchangeable substrate recognition components of the SCF ubiquitin ligases. SCF(Fbxw7/hCdc4) targets several important oncoproteins including c-Myc, c-Jun, cyclin E1, and Notch, for ubiquitin-dependent proteolysis. Recent studies have shown that FBXW7/hCDC4 is mutated in a variety of human tumor types, suggesting that it is a general tumor suppressor in human cancer. Alteration of Fbxw7/hCdc4 function is linked to defects in differentiation, cellular proliferation, and genetic instability. In this review, we summarize what is known about Fbxw7/hCdc4-mediated degradation in the regulation of cellular proliferation and discuss how alteration of its function contributes to human tumorigenesis.

The Fbw7/human CDC4 tumor suppressor targets proproliferative factor KLF5 for ubiquitination and degradation through multiple phosphodegron motifs.

The proproliferative transcription factor KLF5 plays an important role in promoting cell proliferation and tumorigenesis. KLF5 is a short-lived protein that can be rapidly degraded through the ubiquitin-proteasome pathway in cancer cells. However, the mechanisms regulating protein stability remain poorly understood. In this study, the tumor suppressor Fbw7, a component of the SCF complex (SCF(Fbw7)) E3 ubiquitin ligase, specifically promoted the degradation and ubiquitination of KLF5 but had little effect on the stability of KLF4. Fbw7 interacted with KLF5 in a CDC4 phosphodegron (CPD)-dependent manner. Three CPDs were found in the KLF5 protein. Simultaneous mutation of these CPDs significantly abolished Fbw7-mediated ubiquitination and degradation. Furthermore, Fbw7 deficiency dramatically delayed KLF5 turnover and led to the accumulation of KLF5 protein in cancer cells. Glycogen synthase kinase-3beta could phosphorylate and promote Fbw7-mediated KLF5 degradation. More importantly, Fbw7 negatively regulated the biological activity of KLF5 in gene regulation and cell proliferation. Taken together, these data indicate that Fbw7 is a key negative regulator controlling KLF5-mediated cell proliferation and suggest an additional mechanism linking the loss of Fbw7 function to tumorigenesis.

The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation.

Fbw7 is a tumor suppressor frequently inactivated in cancers. The KLF5 transcription factor promotes breast cell proliferation and tumorigenesis through upregulating FGF-BP. The KLF5 protein degrades rapidly through the ubiquitin proteasome pathway. Here, we show that the Skp1-CUL1-Fbw7 E3 ubiquitin ligase complex (SCF(Fbw7)) targets KLF5 for ubiquitin-mediated degradation in a GSK3beta-mediated KLF5 phosphorylation-dependent manner. mutation of the critical S303 residue in the KLF5 Cdc4 phospho-degrons motif ((303)SPPSS) abolishes the protein interaction, ubiquitination, and degradation by Fbw7. Inactivation of endogenous Fbw7 remarkably increases the endogenous KLF5 protein abundances. Endogenous Fbw7 suppresses the FGF-BP gene expression and breast cell proliferation through targeting KLF5 for degradation. These findings suggest that Fbw7 inhibits breast cell proliferation at least partially through targeting KLF5 for proteolysis. This new regulatory mechanism of KLF5 degradation may result in useful diagnostic and therapeutic targets for breast cancer and other cancers.

Tumor suppressor Fbxw7 regulates TGFbeta signaling by targeting TGIF1 for degradation.

Transforming growth factor-beta (TGFbeta) signaling regulates multiple cellular processes, including extracellular matrix production, cell growth, apoptosis and differentiation. Dysfunction of TGFbeta signaling has been implicated in various human disorders ranging from vascular diseases to cancer. TGFbeta signaling is negatively regulated by the transcriptional repressor TGFbeta-induced factor 1 (TGIF1). The tumor suppressor Fbxw7 is the substrate-recognition factor of a ubiquitin ligase that targets multiple proteins for degradation, including c-Myc, cyclin E, c-Jun and Notch. Here, we describe that TGIF1 is targeted for degradation by Fbxw7 in a phosphorylation-dependent manner. Inactivation of Fbxw7 results in the accumulation of phosphorylated TGIF1 molecules and repression of TGFbeta-dependent transcription. cancer cell lines with inactivating mutations in Fbxw7 show enhanced levels of TGIF1 and attenuated TGFbeta-dependent signaling. Importantly, inactivation of Fbxw7 attenuates TGFbeta-dependent regulation of cell growth and migration. Taken together, our results suggest that Fbxw7 is a novel regulator of TGFbeta signaling.

F-box and WD repeat domain-containing 7 regulates intestinal cell lineage commitment and is a haploinsufficient tumor suppressor.

BACKGROUND & AIMS: The E3 ubiquitin ligase F-box and WD repeat domain-containing 7 (Fbw7) degrades several proto-oncogenes including c-Myc, cyclinE, Notch1, and c-Jun. Fbw7 is the fourth most frequently mutated gene in human colorectal carcinomas and has recently been described as a poor prognosis marker in human colorectal carcinoma; however, the molecular mechanism underlying fbw7 mutations in intestinal tumor suppression is unclear. METHODS: To address the role of fbw7 in intestinal homeostasis and tumorigenesis, we generated conditional knock-out mice lacking fbw7 in the intestine and evaluated the effect of fbw7 absence in normal intestinal homeostasis and in adenomatous polyposis coli-mediated tumorigenesis. In parallel, we analyzed a cohort of human tumors bearing mutations in fbw7. RESULTS: Fbw7 was found to be highly expressed in the transit-amplifying progenitor cell compartment, and its deletion resulted in impaired goblet cell differentiation and accumulation of highly proliferating progenitor cells. This function of Fbw7 was mirrored during tumor formation because absence of Fbw7 increased proliferation and decreased differentiation of tumors triggered by aberrant Wnt signalling. Fbw7 exhibited haploinsufficiency for intestinal tumor suppression. Biallelic fbw7 inactivation increased cellular proliferation in physiologic and pathologic conditions in a c-Jun-dependent manner. Increased Notch activity was also observed in human tumors carrying heterozygous fbw7 mutations, suggesting that fbw7 haploinsufficiency for antagonizing Notch activity is conserved between human and murine cancers. CONCLUSIONS: Fbw7 regulates intestinal biology and tumorigenesis by controlling the abundance of different substrates in a dose-dependent fashion, providing a molecular explanation for the heterozygous mutations of fbw7 observed in human colorectal carcinoma.

The Fbw7 tumor suppressor regulates nuclear factor E2-related factor 1 transcription factor turnover through proteasome-mediated proteolysis.

Nuclear factor E2-related factor 1 (Nrf1) is a basic leucine zipper transcription factor that plays important roles in cellular stress response and development. Currently, the mechanism regulating Nrf1 expression is poorly understood. We report here that Nrf1 is a short-lived protein that is targeted by F-box protein Fbw7, which is the substrate-specifying component of SCF (Skp1-Cul1-Fbox protein-Rbx1)-type ubiquitin ligase for degradation via the ubiquitin-proteasome pathway. We show that Fbw7 directly binds Nrf1 through a Cdc4 phosphodegron and that enforced expression of Fbw7 promotes the ubiquitination and degradation of Nrf1. Conversely, depletion of endogenous Fbw7 leads to decreased Nrf1 ubiquitination and accumulation of Nrf1 protein. Accordingly, expression of Fbw7 leads to down-regulation of antioxidant response element-driven gene activation, whereas disruption of Fbw7-mediated destabilization of Nrf1 leads to increased antioxidant response element-driven gene expression. Together, these data identify Fbw7 as a regulator of Nrf1 expression and reveal a novel function of Fbw7 in cellular stress response.

Regulation of APC(Cdh1) E3 ligase activity by the Fbw7/cyclin E signaling axis contributes to the tumor suppressor function of Fbw7.

Fbw7 and Cdh1 are substrate-recognition subunits of the SCF- and APC-type E3 ubiquitin ligases, respectively. There is emerging evidence suggesting that both Fbw7 and Cdh1 function as tumor suppressors by targeting oncoproteins for destruction. Loss of Fbw7, but not Cdh1, is frequently observed in various human tumors. However, it remains largely unknown how Fbw7 mechanistically functions as a tumor suppressor and whether there is a signaling crosstalk between Fbw7 and Cdh1. Here, we report that Fbw7-deficient cells not only display elevated expression levels of SCF(Fbw7) substrates, including cyclin E, but also have increased expression of various APC(Cdh1) substrates. We further defined cyclin E as the critical signaling link by which Fbw7 governs APC(Cdh1) activity, as depletion of cyclin E in Fbw7-deficient cells results in decreased expression of APC(Cdh1) substrates to levels comparable to those in wild-type (WT) cells. Conversely, ectopic expression of cyclin E recapitulates the aberrant APC(Cdh1) substrate expression observed in Fbw7-deficient cells. More importantly, 4A-Cdh1 that is resistant to Cdk2/cyclin E-mediated phosphorylation, but not WT-Cdh1, reversed the elevated expression of various APC(Cdh1) substrates in Fbw7-deficient cells. Overexpression of 4A-Cdh1 also resulted in retarded cell growth and decreased anchorage-independent colony formation. Altogether, we have identified a novel regulatory mechanism by which Fbw7 governs Cdh1 activity in a cyclin E-dependent manner. As a result, loss of Fbw7 can lead to aberrant increase in the expression of both SCF(Fbw7) and APC(Cdh1) substrates. Our study provides a better understanding of the tumor suppressor function of Fbw7, and suggests that Cdk2/cyclin E inhibitors could serve as effective therapeutic agents for treating Fbw7-deficient tumors.

The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia.

The oncogenic transcription factor TAL1/SCL is aberrantly expressed in 60% of cases of human T cell acute lymphoblastic leukemia (T-ALL) and initiates T-ALL in mouse models. By performing global microRNA (miRNA) expression profiling after depletion of TAL1, together with genome-wide analysis of TAL1 occupancy by chromatin immunoprecipitation coupled to massively parallel DNA sequencing, we identified the miRNA genes directly controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. The most dynamically regulated miRNA was miR-223, which is bound at its promoter and up-regulated by the TAL1 complex. miR-223 expression mirrors TAL1 levels during thymic development, with high expression in early thymocytes and marked down-regulation after the double-negative-2 stage of maturation. We demonstrate that aberrant miR-223 up-regulation by TAL1 is important for optimal growth of TAL1-positive T-ALL cells and that sustained expression of miR-223 partially rescues T-ALL cells after TAL1 knockdown. Overexpression of miR-223 also leads to marked down-regulation of FBXW7 protein expression, whereas knockdown of TAL1 leads to up-regulation of FBXW7 protein levels, with a marked reduction of its substrates MYC, MYB, NOTCH1, and CYCLIN E. We conclude that TAL1-mediated up-regulation of miR-223 promotes the malignant phenotype in T-ALL through repression of the FBXW7 tumor suppressor.

')