Pulmonary Arterial Hypertension KnowledgeBase (bioinfom_tsdb)
bioinfom_tsdb
Pulmonary Arterial Hypertension KnowledgeBase
General information | Literature | Expression | Regulation | Mutation | Interaction

Basic Information

Gene ID

6688

Name

SPI1

Synonymous

OF|PU.1|SFPI1|SPI-1|SPI-A;Spi-1 proto-oncogene;SPI1;Spi-1 proto-oncogene

Definition

31 kDa transforming protein|31 kDa-transforming protein|hematopoietic transcription factor PU.1|spleen focus forming virus (SFFV) proviral integration oncogene spi1|transcription factor PU.1

Position

11p11.2

Gene type

protein-coding

Title

Abstract

Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1.

Tight regulation of transcription factors, such as PU.1, is crucial for generation of all hematopoietic lineages. We previously reported that mice with a deletion of an upstream regulatory element (URE) of the gene encoding PU.1 (Sfpi1) developed acute myeloid leukemia. Here we show that the URE has an essential role in orchestrating the dynamic PU.1 expression pattern required for lymphoid development and tumor suppression. URE deletion ablated B2 cells but stimulated growth of B1 cells in mice. The URE was a PU.1 enhancer in B cells but a repressor in T cell precursors. TCF transcription factors coordinated this repressor function and linked PU.1 to Wnt signaling. Failure of appropriate PU.1 repression in T cell progenitors with URE deletion disrupted differentiation and induced thymic transformation. Genome-wide DNA methylation assessment showed that epigenetic silencing of selective tumor suppressor genes completed PU.1-initiated transformation of lymphoid progenitors with URE deletion. These results elucidate how a single transcription factor, PU.1, through the cell context-specific activity of a key cis-regulatory element, affects the development of multiple cell lineages and can induce cancer.

PU.1 is a potent tumor suppressor in classical Hodgkin lymphoma cells.

PU.1 has previously been shown to be down-regulated in classical Hodgkin lymphoma (cHL) cells via promoter methylation. We performed bisulfite sequencing and proved that the promoter region and the -17 kb upstream regulatory element of the PU.1 gene were highly methylated. To evaluate whether down-regulation of PU.1 is essential for the growth of cHL cells, we conditionally expressed PU.1 in 2 cHL cell lines, L428 and KM-H2. Overexpression of PU.1 induced complete growth arrest and apoptosis in both cell lines. Furthermore, in a Hodgkin lymphoma tumor xenograft model using L428 and KM-H2 cell lines, overexpression of PU.1 led to tumor regression or stable disease. Lentiviral transduction of PU.1 into primary cHL cells also induced apoptosis. DNA microarray analysis revealed that among genes related to cell cycle and apoptosis, p21 (CDKN1A) was highly up-regulated in L428 cells after PU.1 induction. Stable knockdown of p21 rescued PU.1-induced growth arrest in L428 cells, suggesting that the growth arrest and apoptosis observed are at least partially dependent on p21 up-regulation. These data strongly suggest that PU.1 is a potent tumor suppressor in cHL and that induction of PU.1 with demethylation agents and/or histone deacetylase inhibitors is worth exploring as a possible therapeutic option for patients with cHL.

')