|
||
|
||
General information | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 2309 |
Name | FOXO3 |
Synonymous | AF6q21|FKHRL1|FKHRL1P2|FOXO2|FOXO3A;forkhead box O3;FOXO3;forkhead box O3 |
Definition | forkhead box O3A|forkhead box protein O3|forkhead homolog (rhabdomyosarcoma) like 1|forkhead in rhabdomyosarcoma-like 1|forkhead, Drosophila, homolog of, in rhabdomyosarcoma-like 1 |
Position | 6q21 |
Gene type | protein-coding |
Source | Count: 2; Pubmed_search,Generif |
Sentence |
Abstract |
Inhibition of FOXO3 tumor suppressor function by betaTrCP1 through ubiquitin-mediated degradation in a tumor mouse model. | BACKGROUND: The ubiquitin-proteasome system is the primary proteolysis machine for controlling protein stability of the majority of regulatory proteins including those that are critical for cancer development. The forkhead box transcription factor FOXO3 plays a key role in regulating tumor suppression; however, the control of FOXO3 protein stability remains to be established. It is crucial to elucidate the molecular mechanisms underlying the ubiquitin-mediated degradation of FOXO3 tumor suppressor. METHODOLOGY AND PRINCIPAL FINDINGS: Here we show that betaTrCP1 oncogenic ubiquitin E3-ligase interacts with FOXO3 and induces its ubiquitin-dependent degradation in an IkappaB kinase-beta phosphorylation dependent manner. Silencing betaTrCP1 augments FOXO3 protein level, resulting in promoting cellular apoptosis in cancer cells. In animal models, increasing FOXO3 protein level by silencing betaTrCP1 suppresses tumorigenesis, whereas decreasing FOXO3 by over-expressing betaTrCP1 promotes tumorigenesis and tumor growth in vivo. CONCLUSIONS/SIGNIFICANCE: This is a unique demonstration that the betaTrCP1-mediated FOXO3 degradation plays a crucial role in tumorigenesis. These findings significantly contribute to understanding of the control of FOXO3 stability in cancer cells and may provide opportunities for developing innovative anticancer therapeutic modalities. |
FOXO3a regulates glycolysis via transcriptional control of tumor suppressor TSC1. | Akt signal transduction induces coordinated increases in glycolysis and apoptosis resistance in a broad spectrum of cancers. Downstream of Akt, the FoxO transcription factors regulate apoptosis via Bim, but the contributions of FoxOs in regulating Akt-induced glycolysis are not well described. We find that FoxO3a knockdown is sufficient to induce apoptosis resistance in conjunction with elevated glycolysis. Glycolysis in FoxO3a-deficient cells was associated with increased S6K1 phosphorylation and was sensitive to rapamycin, an inhibitor of the mTORC1 pathway that has been linked to glycolysis regulation. We show that mTORC1-dependent glycolysis is increased in FoxO3a knockdown cells due to decreased expression of the TSC1 tumor suppressor that opposes mTORC1 activation. FoxO3a binds to and transactivates the TSC1 promoter, indicating a key role for FoxO3a in regulating TSC1 expression. Together, these data demonstrate that FoxO3a regulates glycolysis downstream of Akt through transcriptional control of Tsc1. |
Tumor suppressor FOXO3 participates in the regulation of intestinal inflammation. | Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is characterized by chronic mucosal injury and the infiltration of inflammatory cells. tumor suppressor FOXO3 regulates gene expression and its translocation to the cytosol leads to the abrogation of its transcriptional function. We have previously shown that bacterial infection regulates FOXO3 in intestinal epithelial cells and increases cytokine levels. As TNFalpha is a major contributor in intestinal inflammation, the aim of this study was to assess its effect on FOXO3 and FOXO3's contribution to intestinal inflammation in vitro and in vivo. TNFalpha induces the translocation of nuclear FOXO3 into the cytosol where it undergoes proteasomal degradation in human intestinal HT-29 cells. Proximally, the PI3K and IKK pathways mediate TNFalpha-induced FOXO3 phosphorylation. In FOXO3-silenced HT-29 cells, TNFalpha-induced IL-8 expression is increased approximately 83%. In vivo, Foxo3 is present in the nuclei and cytosol of colonic crypt epithelia. In DSS-induced colonic inflammation, Foxo3's nuclear localization is lost and it is only found in the cytosol. Consistent with a role for Foxo3 in colitis, Foxo3-deficient mice treated with DSS developed more severe colonic inflammation with an increased number of intraepithelial lymphocytes and PMNs infiltrated in the epithelia, than wild-type mice. In summary, TNFalpha inactivates FOXO3 in intestinal epithelia through the PI3K and IKK pathways and FOXO3 inactivation leads to the upregulation of IL-8 in vitro; in vivo Foxo3 is in the cytosol of inflamed colonic epithelia and Foxo3 deficiency leads to severe intestinal inflammation. |
Tumor suppressor Foxo3a is involved in the regulation of lipopolysaccharide-induced interleukin-8 in intestinal HT-29 cells. | Enteric bacteria and their products play an important role in intestinal inflammation; however, the complete mechanisms are not elucidated yet. tumor suppressor Foxo3a regulates gene expression in the nucleus, and its translocation to the cytosol leads to inactivation. Proximally, Foxo3a is regulated by different pathways including the phosphoinositide 3-kinase (PI3K) pathway. The aim of this study was to determine the effect of bacterial infection on Foxo3a in intestinal epithelial cells and to examine the contribution of Foxo3a in intestinal inflammation. Bacterial lipopolysaccharide (LPS) and infection with mouse pathogen Citrobacter rodentium induce translocation of the nuclear Foxo3a into the cytosol, where it degrades in human HT-29 and mouse CMT-93 cells. In colonic epithelia of healthy mice, Foxo3a is localized in the epithelia at the bottom of the crypts in both the nucleus and the cytosol, while in C. rodentium-infected colon Foxo3a is expressed along the crypts and located mainly in the cytosol, suggesting its inactivation. LPS utilized the PI3K pathway to inhibit Foxo3a. Additionally, inhibition of PI3K attenuated LPS-induced proinflammatory interleukin-8 (IL-8). LPS-induced IL-8 is increased in HT-29 cells with silenced Foxo3a. Moreover, in HT-29 cells with silenced Foxo3a, the amount of IkappaBalpha, an NF-kappaB inhibitor, is decreased. In conclusion, LPS and bacterial infection inactivate Foxo3a in intestinal epithelia via the PI3K pathway and inactivated Foxo3a leads to the upregulation of IL-8 by suppressing inhibitory IkappaBalpha. |
Identification of FOXO3 and PRDM1 as tumor-suppressor gene candidates in NK-cell neoplasms by genomic and functional analyses. | Oligo-array comparative genomic hybridization (CGH) and gene-expression profiling of natural killer (NK)-cell neoplasms were used in an effort to delineate the molecular pathogenesis involved. Oligo-array CGH identified two 6q21 regions that were most frequently deleted (14 of 39 or 36%). One of these regions included POPDC3, PREP, PRDM1, ATG5, and AIM1, whereas the other included LACE1 and FOXO3. All genes located in these regions, except for POPDC3 and AIM1, were down-regulated in neoplastic samples, as determined by gene-expression analysis, and were therefore considered to be candidate tumor-suppressor genes. A20 and HACE1, the well-known tumor-suppressor genes located on 6q21-23, were included as candidate genes because they also demonstrated frequent genomic deletions and down-regulated expression. The Tet-Off NK cell line NKL was subsequently established for functional analyses. Seven candidate genes were transduced into Tet-Off NKL and forced re-expression was induced. Re-expression of FOXO3 and PRDM1 suppressed NKL proliferation, but this was not the case after re-expression of the other genes. This effect was confirmed using another NK cell line, SNK10. Furthermore, genomic analyses detected nonsense mutations of PRDM1 that led to functional inactivation in one cell line and one clinical sample. PRDM1 and FOXO3 are considered to play an important role in the pathogenesis of NK-cell neoplasms. |
Copyright © 2016-Present - The Univsersity of Texas Health Science Center at Houston Rights Reserved |