General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 3014 |
Name | H2AFX |
Synonymous | H2A.X|H2A/X|H2AX;H2A histone family, member X;H2AFX;H2A histone family, member X |
Definition | H2AX histone|histone H2A.x|histone H2AX |
Position | 11q23.3 |
Gene type | protein-coding |
Title |
Abstract |
Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression. | Ataxia-telangiectasia (A-T) mutated (ATM) kinase signals all three cell cycle checkpoints after DNA double-stranded break (DSB) damage. H2AX, NBS1, and p53 are substrates of ATM kinase and are involved in ATM-dependent DNA damage responses. We show here that H2AX is dispensable for the activation of ATM and p53 responses after DNA DSB damage. Therefore, H2AX functions primarily as a downstream mediator of ATM functions in the parallel pathway of p53. NBS1 appears to function both as an activator of ATM and as an adapter to mediate ATM activities after DNA DSB damage. Phosphorylation of ATM and H2AX induced by DNA DSB damage is normal in NBS1 mutant/mutant (NBS1m/m) mice that express an N-terminally truncated NBS1 at lower levels. Therefore, the pleiotropic A-T-related systemic and cellular defects observed in NBS1m/m mice are due to the disruption of the adapter function of NBS1 in mediating ATM activities. While H2AX is required for the irradiation-induced focus formation of NBS1, our findings indicate that NBS1 and H2AX have distinct roles in DNA damage responses. ATM-dependent phosphorylation of p53 and p53 responses are largely normal in NBS1m/m mice after DNA DSB damage, and p53 deficiency greatly facilitates tumorigenesis in NBS1m/m mice. Therefore, NBS1, H2AX, and p53 play synergistic roles in ATM-dependent DNA damage responses and tumor suppression. |
Conserved gammaherpesvirus kinase and histone variant H2AX facilitate gammaherpesvirus latency in vivo. | Many herpesvirus-encoded protein kinases facilitate viral lytic replication. Importantly, the role of viral kinases in herpesvirus latency is less clear. Mouse gammaherpesvirus-68 (MHV68)-encoded protein kinase orf36 facilitates lytic replication in part through activation of the host DNA damage response (DDR). Here we show that MHV68 latency was attenuated in the absence of orf36 expression. Unexpectedly, our study uncovered enzymatic activity-independent role of orf36 in the establishment of MHV68 latency following intraperitoneal route of infection. H2AX, an important DDR protein, facilitates MHV68 lytic replication and may be directly phosphorylated by orf36 during lytic infection. In this study, H2AX deficiency, whether systemic or limited to infected cells, attenuated the establishment of MHV68 latency in vivo. Thus, our work reveals viral kinase-dependent regulation of gammaherpesvirus latency and illuminates a novel link between H2AX, a component of a tumor suppressor DDR network, and in vivo latency of a cancer-associated gammaherpesvirus. |