General information | Literature | Expression | Regulation | Mutation | Interaction |
Basic Information |
|
---|---|
Gene ID | 5925 |
Name | RB1 |
Synonymous | OSRC|PPP1R130|RB|p105-Rb|pRb|pp110;retinoblastoma 1;RB1;retinoblastoma 1 |
Definition | prepro-retinoblastoma-associated protein|protein phosphatase 1, regulatory subunit 130|retinoblastoma suspectibility protein|retinoblastoma-associated protein |
Position | 13q14.2 |
Gene type | protein-coding |
Title |
Abstract |
Direct interaction of p21 cyclin-dependent kinase inhibitor with the retinoblastoma tumor suppressor protein. | The p21CKI forms a physical complex with the retinoblastoma protein (pRb) both in vitro and in vivo. The A/B pocket region of pRb and the N-terminal region of p21 were indispensable for this interaction. Among p21 family members, p57, but not p27, associated with pRb. Overexpression of cyclin D1, Cdk4, and E2F1 in the cells expressing pRb and p21 did not perturb the interaction between p21 and pRb. Coexpression of p21 in cells expressing pRb, cyclin D1, and Cdk4 prevented pRb hyperphosphorylation by cyclin D1/Cdk4. On the other hand, hyperphosphorylation of pRb by an excess amount of cyclin/Cdk disrupted pRb/p21 complex formation in vitro. These findings suggest that pRb may be dynamically regulated by the relative binding and activities of p21 and Cdks. |
The retinoblastoma tumor suppressor protein targets distinct general transcription factors to regulate RNA polymerase III gene expression. | The retinoblastoma protein (RB) represses RNA polymerase III transcription effectively both in vivo and in vitro. Here we demonstrate that the general transcription factors snRNA-activating protein complex (SNAP(c)) and TATA binding protein (TBP) are important for RB repression of human U6 snRNA gene transcription by RNA polymerase III. RB is associated with SNAP(c) as detected by both coimmunoprecipitation of endogenous RB with SNAP(c) and cofractionation of RB and SNAP(c) during chromatographic purification. RB also interacts with two SNAP(c) subunits, SNAP43 and SNAP50. TBP or a combination of TBP and SNAP(c) restores efficient U6 transcription from RB-treated extracts, indicating that TBP is also involved in RB regulation. In contrast, the TBP-containing complex TFIIIB restores adenovirus VAI but not human U6 transcription in RB-treated extracts, suggesting that TFIIIB is important for RB regulation of tRNA-like genes. These results suggest that different classes of RNA polymerase III-transcribed genes have distinct general transcription factor requirements for repression by RB. |
RBP1 recruits the mSIN3-histone deacetylase complex to the pocket of retinoblastoma tumor suppressor family proteins found in limited discrete regions of the nucleus at growth arrest. | Retinoblastoma (RB) tumor suppressor family pocket proteins induce cell cycle arrest by repressing transcription of E2F-regulated genes through both histone deacetylase (HDAC)-dependent and -independent mechanisms. In this study we have identified a stable complex that accounts for the recruitment of both repression activities to the pocket. One component of this complex is RBP1, a known pocket-binding protein that exhibits both HDAC-dependent and -independent repression functions. RB family proteins were shown to associate via the pocket with previously identified mSIN3-SAP30-HDAC complexes containing exclusively class I HDACs. Such enzymes do not interact directly with RB family proteins but rather utilize RBP1 to target the pocket. This mechanism was shown to account for the majority of RB-associated HDAC activity. We also show that in quiescent normal human cells this entire RBP1-mSIN3-SAP30-HDAC complex colocalizes with both RB family members and E2F4 in a limited number of discrete regions of the nucleus that in other studies have been shown to represent the initial origins of DNA replication following growth stimulation. These results suggest that RB family members, at least in part, drive exit from the cell cycle by recruitment of this HDAC complex via RBP1 to repress transcription from E2F-dependent promoters and possibly to alter chromatin structure at DNA origins. |
Cell-autonomous and non-cell-autonomous functions of the Rb tumor suppressor in developing central nervous system. | The retinoblastoma tumor suppressor (RB) plays an important role in the regulation of cell cycle progression and terminal differentiation of many cell types. Rb(-/-) mouse embryos die at midgestation with defects in cell cycle regulation, control of apoptosis and terminal differentiation. However, chimeric mice composed of wild-type and Rb-deficient cells are viable and show minor abnormalities. To determine the role of Rb in development more precisely, we analyzed chimeric embryos and adults made with marked Rb(-/-) cells. Like their germline Rb(-/-) counterparts, brains of midgestation chimeric embryos exhibited extensive ectopic S-phase entry. In Rb-mutants, this is accompanied by widespread apoptosis. However, in chimeras, the majority of Rb-deficient cells survived and differentiated into neuronal fates. Rescue of Rb(-/-) neurons in the presence of wild-type cells occurred after induction of the p53 pathway and led to accumulation of cells with 4n DNA content. Therefore, the role of Rb during development can be divided into a cell-autonomous function in exit from the cell cycle and a non-cell-autonomous role in the suppression of apoptosis and induction of differentiation. |
PML-RARalpha alleviates the transcriptional repression mediated by tumor suppressor Rb. | A fusion between the promyelocytic leukemia (PML) protein and the retinoic acid receptor-alpha (RARalpha) results in the transforming protein of acute promyelocytic leukemia, PML-RARalpha. PML has growth-suppressive properties and is localized within distinct nuclear structures referred to as nuclear bodies. PML participates in numerous cellular functions, including transcriptional activation, apoptosis, and transcriptional repression, whereas PML-RARalpha blocks these functions. However, the role played by PML-RARalpha in leukemogenesis remains unclear. Here we report that PML is required for transcriptional repression mediated by the tumor suppressor Rb. Rb interacts with the histone decaetylase (HDAC) complex containing co-repressors and represses the transcription of the E2F target genes. Overexpression of PML enhanced Rb-mediated repression. The degree of Rb-mediated repression was weakened by injecting anti-PML antibodies and was lower in Pml-deficient mouse embryonic fibroblasts. PML-RARalpha inhibited Rb-mediated repression, and two co-repressor-interacting sites on the PML-RARalpha molecule were required for this activity. Furthermore, PML-RARalpha blocked the interaction between Rb and HDAC. Thus, aberrant binding of PML-RARalpha to co-repressor-HDAC complexes may inhibit their association with Rb, resulting in the abrogation of Rb activity. Thus, the disruption of Rb-mediated repression may be a contributory factor in leukemogenesis. |
DNA damage invokes mismatch repair-dependent cyclin D1 attenuation and retinoblastoma signaling pathways to inhibit CDK2. | DNA-damage evokes cell cycle checkpoints, which function to maintain genomic integrity. The retinoblastoma tumor suppressor (RB) and mismatch repair complexes are known to contribute to the appropriate cellular response to specific types of DNA damage. However, the signaling pathways through which these proteins impact the cell cycle machinery have not been explicitly determined. RB-deficient murine embryo fibroblasts continued a high degree of DNA replication following the induction of cisplatin damage, but were inhibited for G(2)/M progression. This damage led to RB dephosphorylation/activation and subsequent RB-dependent attenuation of cyclin A and CDK2 activity. In both Rb+/+ and Rb -/- cells, cyclin D1 expression was attenuated following DNA damage. As cyclin D1 is a critical determinant of RB phosphorylation and cell cycle progression, we probed the pathway through which cyclin D1 degradation occurs in response to DNA damage. We found that attenuation of endogenous cyclin D1 is dependent on multiple mismatch repair proteins. We demonstrate that the mismatch repair-dependent attenuation of endogenous cyclin D1 is critical for attenuation of CDK2 activity and induction of cell cycle checkpoints. Together, these studies couple the activity of the retinoblastoma and mismatch repair tumor suppressor pathways through the degradation of cyclin D1 and dual attenuation of CDK2 activity. |
Oxidized low density lipoprotein induces the cyclin-dependent kinase inhibitor p21(waf1) and the tumor suppressor Rb. | Oxidized low density lipoprotein (OxLDL) is known to be cytotoxic towards different cell types of the arterial wall, leading to progression of an atherosclerotic plaque. We previously reported that OxLDL activates the tumor suppressor p53 in human fibroblasts [Biochem. Biophys. Res. Commun. 276 (2000) 718]. In the present work, we demonstrate that OxLDL increased intracellular levels of the kinase inhibitor p21(waf1) (p21) and of the tumor suppressor Rb. Concomitantly, level of the hypophosphorylated active form of Rb (HypoP-Rb) was also enhanced. Cycloheximide prevented the OxLDL-induced increase in p21, Rb, and HypoP-Rb, whereas okadaic acid had no effect. This increase was also prevented by the antioxidant vitamin E. In addition, the lipid extract of OxLDL, which includes the lipid peroxidation products, reproduced the action of the OxLDL particle itself. OxLDL and its lipid extract induced an oxidative stress, as assessed by the intracellular levels of reactive oxygen species and lipid peroxidation products. Finally, OxLDL induced a dose-dependent inhibition of DNA synthesis as assessed by thymidine incorporation. These results demonstrate that OxLDL or its lipid peroxidation products, by generation of an oxidative stress, enhances the expression of p21 and Rb genes, leading to an accumulation of the Hypo-P active form of the tumor suppressor Rb. This phenomenon is in accordance with the fact that p21 is a mediator of p53-dependent cell-cycle arrest in G1 and is most probably involved in the cytotoxicity of OxLDL. |
Retinoblastoma tumor suppressor targets dNTP metabolism to regulate DNA replication. | The retinoblastoma tumor suppressor, RB, is a negative regulator of the cell cycle that is inactivated in the majority of human tumors. Cell cycle inhibition elicited by RB has been attributed to the attenuation of CDK2 activity. Although ectopic cyclins partially overcome RB-mediated S-phase arrest at the replication fork, DNA replication remains inhibited and cells fail to progress to G(2) phase. These data suggest that RB regulates an additional execution point in S phase. We observed that constitutively active RB attenuates the expression of specific dNTP synthetic enzymes: dihydrofolate reductase, ribonucleotide reductase (RNR) subunits R1/R2, and thymidylate synthase (TS). Activation of endogenous RB and related proteins by p16ink4a yielded similar effects on enzyme expression. Conversely, targeted disruption of RB resulted in increased metabolic protein levels (dihydrofolate reductase, TS, RNR-R2) and conferred resistance to the effect of TS or RNR inhibitors that diminish available dNTPs. Analysis of dNTP pools during RB-mediated cell cycle arrest revealed significant depletion, concurrent with the loss of TS and RNR protein. Importantly, the effect of active RB on cell cycle position and available dNTPs was comparable to that observed with specific antimetabolites. Together, these results show that RB-mediated transcriptional repression attenuates available dNTP pools to control S-phase progression. Thus, RB employs both canonical cyclin-dependent kinase/cyclin regulation and metabolic regulation as a means to limit proliferation, underscoring its potency in tumor suppression. |
Retinoblastoma tumor suppressor and genome stability. | Retinoblastoma gene (Rb) is the prototype of tumor suppressors. Germline mutation in the retinoblastoma gene is susceptible to cancer and reintroduction of wild-type Rb is able to suppress neoplastic phenotypes. The fundamental cellular functions of Rb in the control of cell growth and differentiation are important for its tumor suppression. In general, cancer susceptibility caused by inactivation of a tumor suppressor gene results from genome instability. Accordingly, Rb may function in the maintenance of chromosome stability by influencing mitotic progression, faithful chromosome segregation, and structural remodeling of mitotic chromosomes. Rb is also implicated in the regulation of replication machinery and in the control of cell cycle checkpoints in response to DNA damage, further supporting such a role for Rb. Moreover, the mechanistic basis for Rb-mediated transcriptional repression has revealed its connection to global chromatin remodeling. It is likely that Rb suppresses tumor formation by virtue of its multiple biological activities, and a theme throughout its multiple cellular functions is its central role in controlling activities that involve chromatin remodeling. A model in which Rb controls global genome fluidity is thus proposed. Finally, a recent study provides direct evidence indicating that loss of Rb function leads to genome instability. Therefore, tumor suppressors have a common role in the maintenance of genome stability, and such a role may be pivotal for their functions in tumor suppression. |
Skip interacts with the retinoblastoma tumor suppressor and inhibits its transcriptional repression activity. | Ski interacting protein (Skip) plays an important role in the transforming activity of both v-Ski and EBNA2 (Epstein-Barr virus encoded latency protein) and is involved in EBNA2 and NotchIC activation of CBF1-repressed promoters. We have previously shown that Skip acts as a transcriptional co-activator on a number of cellular and viral promoters. Here, we report that Skip also interacts with pRb and, in cooperation with Ski, can overcome pRb-induced transcriptional repression. We show a strong and direct interaction between pRb and Skip, and we map the site of interaction to amino acid residues 171-353 of the evolutionarily conserved SNW domain of Skip. Furthermore, the combination of Skip and Ski can successfully overcome the G1 arrest and flat cell phenotype induced by pRb. Taken together, these studies suggest that one potential function of the Skip-Ski complex is to overcome the growth-suppressive activities of pRb. |
Structural basis for the recognition of the E2F transactivation domain by the retinoblastoma tumor suppressor. | Repression of E2F transcription activity by the retinoblastoma (Rb) tumor suppressor through its interaction with the transactivation domain of the E2F transcription factor is one of the central features of G1/S arrest in the mammalian cell cycle. Deregulation of the Rb-E2F interaction results in hyperproliferation, lack of differentiation, and apoptosis, and can lead to cancer. The 2.2-A crystal structure of the Rb pocket complexed with an 18-residue transactivation-domain peptide of E2F-2 reveals that the boomerang-shaped peptide binds to the highly conserved interface between the A-box and the B-box of the Rb pocket in a bipartite manner. The N-terminal segment of the E2F-2 peptide in an extended beta-strand-like structure interacts with helices from the conserved groove at the A-B interface, whereas the C-terminal segment, which contains one 3(10) helix, binds to a groove mainly formed by A-box helices. The flexibility in the middle of the E2F-2 peptide is essential for the tight association of E2F to the Rb pocket. The binding of Rb to the E2F-2 peptide conceals several conserved residues that are crucial for transcription activation of E2F. We provide the structural basis for the Rb-mediated repression of E2F transcription activity without the requirement of histone-modifying enzymes. |
Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. | Cellular senescence is an extremely stable form of cell cycle arrest that limits the proliferation of damaged cells and may act as a natural barrier to cancer progression. In this study, we describe a distinct heterochromatic structure that accumulates in senescent human fibroblasts, which we designated senescence-associated heterochromatic foci (SAHF). SAHF formation coincides with the recruitment of heterochromatin proteins and the retinoblastoma (Rb) tumor suppressor to E2F-responsive promoters and is associated with the stable repression of E2F target genes. Notably, both SAHF formation and the silencing of E2F target genes depend on the integrity of the Rb pathway and do not occur in reversibly arrested cells. These results provide a molecular explanation for the stability of the senescent state, as well as new insights into the action of Rb as a tumor suppressor. |
Tumor suppressor pRB functions as a co-repressor of the CCAAT displacement protein (CDP/cut) to regulate cell cycle controlled histone H4 transcription. | The CCAAT displacement protein (CDP-cut/CUTL1/cux) performs a key proliferation-related function as the DNA binding subunit of the cell cycle controlled HiNF-D complex. HiNF-D interacts with all five classes (H1, H2A, H2B, H3, and H4) of the cell-cycle dependent histone genes, which are transcriptionally and coordinately activated at the G(1)/S phase transition independent of E2F. The tumor suppressor pRB/p105 is an intrinsic component of the HiNF-D complex. However, the molecular interactions that enable CDP and pRB to form a complex and thus convey cell growth regulatory information onto histone gene promoters must be further defined. Using transient transfections, we show that CDP represses the H4 gene promoter and that pRB functions with CDP as a co-repressor. Direct physical interaction between CDP and pRB was observed in glutathione-S-transferase (GST) pull-down assays. Furthermore, interactions between these proteins were established by yeast and mammalian two-hybrid experiments and co-immunoprecipitation assays. Confocal microscopy shows that subsets of each protein are co-localized in situ. Using a series of pRB mutants, we find that the CDP/pRB interaction, similar to the E2F/pRB interaction, utilizes the A/B large pocket (LP) of pRB. Thus, several converging lines of evidence indicate that complexes between CDP and pRB repress cell cycle regulated histone gene promoters. |
Inhibition of retinoblastoma protein degradation by interaction with the serpin plasminogen activator inhibitor 2 via a novel consensus motif. | Plasminogen activator inhibitor-2 (PAI-2) is well documented as an inhibitor of the extracellular serine proteinase urokinase-type plasminogen activator (uPA) and is expressed in activated monocytes and macrophages, differentiating keratinocytes, and many tumors. Here we show that PAI-2 has a novel intracellular function as a retinoblastoma protein (Rb)-binding protein. PAI-2 colocalized with Rb in the nucleus and inhibited the turnover of Rb, which led to increases in Rb protein levels and Rb-mediated activities. Although PAI-2 contains an LXCXE motif, Rb binding was primarily mediated by the C-D interhelical region of PAI-2, which was found to bind to the C pocket of Rb. The C-D interhelical region of PAI-2 contained a novel Rb-binding motif, termed the PENF homology motif, which is shared by many cellular and viral Rb-binding proteins. PAI-2 expression also protected Rb from the accelerated degradation mediated by human papillomavirus (HPV) E7, leading to recovery of Rb and inhibition of E6/E7 mRNA expression. Protection of Rb by PAI-2 begins to explain many of the diverse, uPA-independent phenotypes conferred by PAI-2 expression. These results indicate that PAI-2 may enhance Rbs tumor suppressor activity and suggest a potential therapeutic role for PAI-2 against HPV-transformed lesions. |
How the other half lives, the amino-terminal domain of the retinoblastoma tumor suppressor protein. | The retinoblastoma tumor suppressor gene (RB1) is currently the only known gene whose mutation is necessary and sufficient for the development of a human cancer. mutation or deregulation of RB1 is observed so frequently in other tumor types that compromising RB1 function may be a prerequisite for malignant transformation. Identifying the molecular mechanisms that provide the basis for RB1-mediated tumor suppression has become an important goal in the quest to understand and treat cancer. The lions share of research on these mechanisms has focused on the carboxy-terminal half of the RB1 encoded protein (pRB). This focus is with good reason since this part of the protein, now called the "large pocket," is required for most of its known activities identified in vitro and in vivo. Large pocket mediated mechanisms alone, however, cannot account for all observed properties of pRB. The thesis presented here is that the relatively uncharacterized amino-terminal half of the protein makes important contributions to pRB-mediated tumor suppression. The goals of this review are to summarize evidence indicating that an amino-terminal structural domain is important for pRB function and to suggest a general hypothesis as to how this domain can be integrated with current models of pRB function. |
Effect of retinoblastoma tumor suppressor gene expression on chemosensitivity of human osteosarcoma cell lines. | We examined the effects of inactivation of the RB gene on chemosensitivity of human osteosarcoma cell lines, using the MTT assay and calculating the inhibition index. Although the human osteosarcoma cell lines HOS and MG63 have a wild-type RB gene, SaOS-2 and OSrb (established from retinoblastoma patient) have no active RB gene. We used these 4 cell lines in growth inhibition assays for doxorubicin, cisplatin and methotrexate, and assessed the chemosensitivity. In the growth inhibition assay for methotrexate, cell lines lacking an active RB gene were more resistant than cell lines with an active RB gene. |
Retinoblastoma tumor suppressor: analyses of dynamic behavior in living cells reveal multiple modes of regulation. | The retinoblastoma tumor suppressor, RB, assembles multiprotein complexes to mediate cell cycle inhibition. Although many RB binding partners have been suggested to underlie these functions, the validity of these interactions on the behavior of RB complexes in living cells has not been investigated. Here, we studied the dynamic behavior of RB by using green fluorescent protein-RB fusion proteins. Although these proteins were universally nuclear, phosphorylation or oncoprotein binding mediated their active exclusion from the nucleolus. In vivo imaging approaches revealed that RB exists in dynamic equilibrium between a highly mobile and a slower diffusing species, and genetic lesions associated with tumorigenesis increased the fraction of RB in a highly mobile state. The RB complexes dictating cell cycle arrest were surprisingly dynamic and harbored a relatively short residence time on chromatin. In contrast, this rapid exchange was attenuated in cells that are hypersensitive to RB, suggesting that responsiveness may inversely correlate with mobility. The stability of RB dynamics within the cell was additionally modified by the presence and function of critical corepressors. Last, the RB-assembled complexes present in living cells were primarily associated with E2F binding sites in chromatin. In contrast to RB, E2F1 consistently maintained a stable association with E2F sites regardless of cell type. Together, these results elucidate the kinetic framework of RB tumor suppressor action in transcriptional repression and cell cycle regulation. |
Geminin is targeted for repression by the retinoblastoma tumor suppressor pathway through intragenic E2F sites. | The geminin protein is a critical regulator of DNA replication. It functions to control replication fidelity by blocking the assembly of prereplication complexes in the S and G(2) phases of the cell cycle. Geminin protein levels, which are low in G(0)/G(1) and increase at the G(1)/S transition, are controlled through coordinate transcriptional and proteolytic regulation. Here we show that geminin is regulated transcriptionally by the retinoblastoma tumor suppressor (RB)/E2F pathway. Initially, we observed that the activation of RB led to the repression of geminin transcription. Conversely, Rb-null mouse embryonic fibroblasts have enhanced the expression of geminin relative to wild type mouse embryonic fibroblasts. Similarly, an acute loss of Rb in mouse adult fibroblasts deregulated geminin RNA and protein levels. To delineate the responsible regulatory motifs, luciferase reporter constructs containing fragments of the geminin promoter were generated. An analysis of the critical regulatory cis-acting elements in the geminin promoter indicated that intragenic E2F sites down-stream of the first exon were responsible for RB-mediated repression of geminin. The direct analysis of the endogenous geminin promoter revealed that these intragenic E2F sites are occupied by E2F proteins, and the mutation of these sites eliminates responsiveness to RB. Together, these data link the expression of geminin to the RB/E2F pathway and represent the first promoter analysis of this important regulator of DNA replication. |
Hierarchical requirement of SWI/SNF in retinoblastoma tumor suppressor-mediated repression of Plk1. | Plk1 (Polo-like kinase 1) is a critical regulator of cell cycle progression that harbors oncogenic activity and exhibits aberrant expression in multiple tumors. However, the mechanism through which Plk1 expression is regulated has not been extensively studied. Here we demonstrate that Plk1 is a target of the retinoblastoma tumor suppressor (RB) pathway. Activation of RB and related pocket proteins p107/p130 mediate attenuation of Plk1. Conversely, RB loss deregulates the control of Plk1 expression. RB pathway activation resulted in the repression of Plk1 promoter activity, and this action was dependent on the SWI/SNF chromatin remodeling complex. Although SWI/SNF subunits are lost during tumorigenesis and cooperate with RB for transcriptional repression, the mechanism through which SWI/SNF impinges on RB action is unresolved. Therefore, we delineated the requirement of SWI/SNF for three critical facets of Plk1 promoter regulation: transcription factor binding, corepressor binding, and histone modification. We find that E2F4 and pocket protein association with the Plk1 promoter is independent of SWI/SNF. However, these analyses revealed that SWI/SNF is required for histone deacetylation of the Plk1 promoter. The importance of SWI/SNF-dependent histone deacetylation of the Plk1 promoter was evident, because blockade of this event restored Plk1 expression in the presence of active RB. In summary, these data demonstrate that Plk1 is a target of the RB pathway. Moreover, these findings demonstrate a hierarchical role for SWI/SNF in the control of promoter activity through histone modification. |
Docking-dependent regulation of the Rb tumor suppressor protein by Cdk4. | Phosphorylation of target proteins by cyclin D1-Cdk4 requires both substrate docking and kinase activity. In addition to the ability of cyclin D1-Cdk4 to catalyze the phosphorylation of consensus sites within the primary amino acid sequence of a substrate, maximum catalytic activity requires the enzyme complex to anchor at a site remote from the phospho-acceptor site. A novel Cdk4 docking motif has been defined within a stretch of 19 amino acids from the C-terminal domain of the Rb protein that are essential for Cdk4 binding. mutation or deletion of the docking motif prevents Cdk4-dependent phosphorylation of full-length Rb protein or C-terminal Rb fragments in vitro and in cells, while a peptide encompassing the Cdk4 docking motif specifically inhibits Cdk4-dependent phosphorylation of Rb. Cyclin D1-Cdk4 can overcome the growth-suppressive activity of Rb in both cell cycle progression and colony formation assays; however, while mutants of Rb in which the Cdk4 docking site has been either deleted or mutated retain growth suppressor activity, they are resistant to inactivation by cyclin D1-Cdk4. Finally, binding of Cdk4 to its docking site can inhibit cleavage of exogenous and endogenous Rb in response to distinct apoptotic signals. The Cdk4 docking motif in Rb gives insight into the mechanism by which enzyme specificity is ensured and highlights a role for Cdk4 docking in maintaining the Rb protein in a form that favors cell survival rather than apoptosis. |
Distinct mechanisms for repression of RNA polymerase III transcription by the retinoblastoma tumor suppressor protein. | The retinoblastoma (RB) protein represses global RNA polymerase III transcription of genes that encode nontranslated RNAs, potentially to control cell growth. However, RNA polymerase III-transcribed genes exhibit diverse promoter structures and factor requirements for transcription, and a universal mechanism explaining global repression is uncertain. We show that RB represses different classes of RNA polymerase III-transcribed genes via distinct mechanisms. Repression of human U6 snRNA (class 3) gene transcription occurs through stable promoter occupancy by RB, whereas repression of adenovirus VAI (class 2) gene transcription occurs in the absence of detectable RB-promoter association. Endogenous RB binds to a human U6 snRNA gene in both normal and cancer cells that maintain functional RB but not in HeLa cells whose RB function is disrupted by the papillomavirus E7 protein. Both U6 promoter association and transcriptional repression require the A/B pocket domain and C region of RB. These regions of RB contribute to U6 promoter targeting through numerous interactions with components of the U6 general transcription machinery, including SNAP(C) and TFIIIB. Importantly, RB also concurrently occupies a U6 promoter with RNA polymerase III during repression. These observations suggest a novel mechanism for RB function wherein RB can repress U6 transcription at critical steps subsequent to RNA polymerase III recruitment. |
The Rb tumor suppressor is required for stress erythropoiesis. | The retinoblastoma tumor suppressor gene plays important roles in cell cycle control, differentiation and survival during development and is functionally inactivated in most human cancers. Early studies using gene targeting in mice suggested a critical role for pRb in erythropoiesis, while more recent experiments have suggested that many of the abnormal embryonic phenotypes in the Rb null mouse result from a defective placenta. To address this controversy and determine whether Rb has cell intrinsic functions in erythropoiesis, we examined the effects of Rb loss on red cell production following acute deletion of pRb in vitro and under different stress conditions in vivo. Under stress conditions, pRb was required to regulate erythroblast expansion and promote red cell enucleation. Acute deletion of Rb in vitro induced erythroid cell cycle and differentiation defects similar to those observed in vivo. These results demonstrate a cell intrinsic role for pRb in stress erythropoiesis and hematopoietic homeostasis that has relevance for human diseases. |
LIM domains-containing protein 1 (LIMD1), a tumor suppressor encoded at chromosome 3p21.3, binds pRB and represses E2F-driven transcription. | LIM domains-containing protein 1 (LIMD1) is encoded at chromosome 3p21.3, a region commonly deleted in many solid malignancies. However, the function of LIMD1 is unknown. Here we show that LIMD1 specifically interacts with retinoblastoma protein (pRB), inhibits E2F-mediated transcription, and suppresses the expression of the majority of genes with E2F1-responsive elements. LIMD1 blocks tumor growth in vitro and in vivo and is down-regulated in the majority of human lung cancer samples tested. Our data indicate that LIMD1 is a tumor-suppressor gene, the protein product of which functionally interacts with pRB and the loss of which promotes lung carcinogenesis. |
Viral oncoproteins E1A and E7 and cellular LxCxE proteins repress SUMO modification of the retinoblastoma tumor suppressor. | The retinoblastoma tumor suppressor protein (pRB) is a major regulator of cell-cycle progression and cellular differentiation. Central to pRB function is the pocket domain, which serves as the main binding region for cellular regulators. In tumors pRB is frequently inactivated by mutations in the pocket domain or by binding of viral oncoproteins to this region. A characteristic feature of these viral oncoproteins and many cellular pRB-binding partners is an LxCxE sequence motif, which interacts with pRBs pocket domain. Here, we show that the ubiquitin-like modifier SUMO is covalently attached to a distinct residue (K720) of pRB within the B-box of the pocket region that binds LxCxE-motif proteins. We provide evidence that SUMO preferentially targets the active, hypophosphorylated form of pRB and show that tumorigenic mutations of pRB in the pocket domain lead to a loss of SUMOylation. Notably, the level of pRB SUMOylation is controlled by the interaction of pRB with viral and cellular LxCxE-motif proteins. Inhibitors of pRB function, including the viral oncoproteins E1A and E7 and the cellular E1A-like inhibitor of differentiation EID-1, completely abolish SUMO modification of pRB. Conversely, pRB mutants deficient in binding of LxCxE-motif proteins exhibit a drastically enhanced modification by SUMO. Finally, we provide evidence that SUMOylation can influence pRB function, as the SUMO-deficient pRB(K720R) mutant exerts a slightly higher repressive potential on an E2F-responsive reporter gene than wild-type pRB. Taken together, these data identify SUMO modification as a novel post-translational modification of pRB that may control pRB activity by modulating LxCxE-pocket interactions. |
Aberrant expression of tumor suppressor genes and their association with chimeric oncogenes in pediatric acute lymphoblastic leukemia. | Aberrant expression of tumor suppressor genes WT 1, RB 1, p53, homozygous deletion of p16 gene and their relationship with expression of oncogenes BCR-ABL, TEL-AML 1, MLL-AF 4, E2A-PBX 1, SIL-TAL 1 were determined in bone marrow samples of children with de novo B-lineage (n=170) and T-lineage (n=25) acute lymphoblastic leukemia (ALL). In contrast to expression of chimeric oncogenes alterations in p16, WT 1, RB 1 and p53 expression were T/B-lineage-unrestricted. Significant association between expression of MLL-AF 4 and WT 1, E2A-PBX 1 and p53; SIL-TAL 1 and homozygous deletion of p16 has been demonstrated. |
The retinoblastoma tumor suppressor protein is required for efficient processing and repair of trapped topoisomerase II-DNA-cleavable complexes. | Type II topoisomerases (TOP2) introduce transient double-stranded DNA breaks through a covalent TOP2-DNA intermediate. Anticancer agents like etoposide kill cells by trapping covalent TOP2-DNA cleavable complexes. pathways influencing the repair of cleavable complexes are expected to be major determinants of therapeutic response to etoposide. Rb1 is required to enforce cell cycle checkpoints in response to DNA damage, but evidence for a direct role in the processing and repair of DNA lesions is lacking. We observe that degradation of trapped TOP2-cleavable complexes, liberation of DNA strand breaks, and repair of those breaks occurs more efficiently in cells expressing Rb1 protein (pRb). Cells lacking pRb are more sensitive to etoposide-induced cytotoxicity. Rb1-mediated processing and repair of TOP2-cleavable complexes is genetically separable from its ability to bind E2F and enforce DNA damage-induced cell cycle checkpoints. Rb1 protein binds both TOP2 and BRCA1 in intact cells, and pRb is required for association between TOP2 and BRCA1. These results suggest that pRb facilitates processing and repair of TOP2-cleavable complexes by recruiting proteins like BRCA1 to the damaged site. The functional status of pRb, therefore, may influence sensitivity to etoposide by facilitating the repair of trapped TOP2-DNA complexes as well as by enforcing cell cycle checkpoints. |
A transcriptional regulatory element screening system reveals a novel E2F1/pRb transcription regulation pathway. | We developed a transcriptional regulatory element library which contains 160 independent known transcriptional regulatory elements linked to luciferase reporter vectors. That library proved valuable in the identification of p53 response elements and of E-box sequence preferences of several E-box binding proteins, and we used it to explore E2F1 target regulatory elements. Among those 160 elements, we found 3 E2F1 response elements, an E2F1 consensus sequence, an insulin response element which contained the E2F consensus sequence, and a basal level enhancer (BLE1) which had a nonconsensus E2F binding sequence. BLE1 functioned as multiple copy, with E2F1 in a dose-dependent manner, and had a sequence specificity for E2F1. Electrophoretic mobility shift assay revealed that BLE1 specifically interacts with E2F1 comparable to the E2F element. Interestingly, transactivation via five copies of BLE1 was not repressed but rather was stimulated by E2F1 in combination with the retinoblastoma tumor suppressor protein (pRb). The retinoblastoma control element (RCE) contains a direct repeated BLE1 in the c-fos gene promoter which also functioned like the multiple BLE1. Our data show that E2F1 has potential binding activity to the RCE and a different transcriptional regulation pathway which cooperates with pRb. Our transcriptional regulatory element screening system is useful for identifying novel transcriptional pathways. |
Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. | The E7 oncoprotein from human Papillomavirus (HPV) mediates cell transformation in part by binding to the human pRb tumor suppressor protein and E2F transcription factors, resulting in the dissociation of pRb from E2F transcription factors and the premature cell progression into the S-phase of the cell cycle. This activity is mediated by the LXCXE motif and the CR3 zinc binding domain of the E7 protein. In this study we report the x-ray crystal structure of the CR3 region of HPV E7 and a structure-based mutational analysis to investigate its mode of pRb and E2F binding and E2F displacement from pRb. The structure reveals a novel zinc-bound E7-CR3 obligate homodimer that contains two surface patches of sequence conservation. mutation of residues within these patches reveals that one patch is required for pRb binding, whereas the other is required for E2F binding. We also show that both E7-mediated interactions are required to disrupt pRb.E2F complexes. Based on these studies we present a mechanistic model for how E7 displaces E2F from pRb. Because the CR3 region of HPV E7 has no detectable homology to other human proteins, the structure-function studies presented here provide an avenue for developing small molecule compounds that inhibit HPV-E7-mediated cell transformation. |
Down-regulation of the retinoblastoma tumor suppressor by the hepatitis C virus NS5B RNA-dependent RNA polymerase. | The retinoblastoma tumor-suppressor protein (Rb) plays a critical role in controlling cellular proliferation and apoptosis by regulating E2F transcription factors. Rb is a key target of oncoproteins expressed by DNA tumor viruses, but RNA viruses are not known to regulate Rb function. Here, we show that Rb abundance is negatively regulated in cells containing replicating genomic RNA from hepatitis C virus, a human virus strongly associated with hepatocellular carcinoma. The viral RNA-dependent RNA polymerase NS5B forms a complex with Rb, targeting it for degradation and resulting in reduction of Rb abundance, activation of E2F-responsive promoters, and cell proliferation. NS5B contains a conserved Leu-x-Cys/Asn-x-Asp motif that is homologous to Rb-binding domains in the oncoproteins of DNA viruses. This domain overlaps the polymerase active site, and mutations within it abrogate Rb binding and reverse the effects of NS5B on E2F promoter activation and cell proliferation. These findings suggest a unique link between an oncogenic RNA virus implicated in the development of liver cancer and a critically important tumor-suppressor protein. |
Tumor deletion mapping of chromosomal region 13q14 in 43 growth hormone secreting pituitary adenomas. | Previous studies have reported allelic loss in chromosomal region 13q14 in pituitary tumors. However, the role of RB1 in this region has not been clarified. We performed a tumor deletion map of chromosomal region 13q14 with pituitary adenomas and matched blood samples of 43 patients with acromegaly. Twenty-one patients had non-invasive tumors, 19 had invasive tumors, and in 3 this information was not available. Results showed loss of heterozygosity in at least one microsatelite marker of region 13q14 in 12% (5 of 43) of the somatotropinomas. Retention of marker D13S1325, telomeric to RB1, suggests that the putative tumor suppressor gene is located centromeric to this region, which includes RB1 locus. The participation of RB1 was excluded in four of the five cases because retinoblastoma protein was shown to be positive in these tumors in our previous study. Allelic loss occurred in similar frequency in invasive and noninvasive adenomas. In summary, we confirmed the participation of chromosomal region 13q14 in a subset of GH-secreting adenomas with no regard to tumor grade. RB1 was not implicated, suggesting the participation of another tumor suppressor gene in this region during the first steps of somatotropinoma development. |
Compensation by tumor suppressor genes during retinal development in mice and humans. | BACKGROUND: The RB1 gene was the first tumor suppressor gene cloned from humans by studying genetic lesions in families with retinoblastoma. Children who inherit one defective copy of the RB1 gene have an increased susceptibility to retinoblastoma. Several years after the identification of the human RB1 gene, a targeted deletion of Rb was generated in mice. Mice with one defective copy of the Rb gene do not develop retinoblastoma. In this manuscript, we explore the different roles of the Rb family in human and mouse retinal development in order to better understand the species-specific difference in retinoblastoma susceptibility. RESULTS: We found that the Rb family of proteins (Rb, p107 and p130) are expressed in a dynamic manner during mouse retinal development. The primary Rb family member expressed in proliferating embryonic retinal progenitor cells in mice is p107, which is required for appropriate cell cycle exit during retinogenesis. The primary Rb family member expressed in proliferating postnatal retinal progenitor cells is Rb. p130 protein is expressed redundantly with Rb in postmitotic cells of the inner nuclear layer and the ganglion cell layer of the mouse retina. When Rb is inactivated in an acute or chronic manner during mouse retinal development, p107 is upregulated in a compensatory manner. Similarly, when p107 is inactivated in the mouse retina, Rb is upregulated. No changes in p130 expression were seen when p107, Rb or both were inactivated in the developing mouse retina. In the human retina, RB1 was the primary family member expressed throughout development. There was very little if any p107 expressed in the developing human retina. In contrast to the developing mouse retina, when RB1 was acutely inactivated in the developing human fetal retina, p107 was not upregulated in a compensatory manner. CONCLUSION: We propose that intrinsic genetic compensation between Rb and p107 prevents retinoblastoma in Rb- or p107-deficient mice, but this compensation does not occur in humans. Together, these data suggest a model that explains why humans are susceptible to retinoblastoma following RB1 loss, but mice require both Rb and p107 gene inactivation. |
Retinoblastoma tumor suppressor: where cancer meets the cell cycle. | The retinoblastoma tumor suppressor gene, Rb, was the first tumor suppressor identified and plays a fundamental role in regulation of progression through the cell cycle. This review details facets of RB protein function in cell cycle control and focuses on specific questions that remain intensive areas of investigation. |
Reverse mutational analysis reveals threonine-373 as a potentially sufficient phosphorylation site for inactivation of the retinoblastoma tumor suppressor protein (pRB). | Previous studies in our laboratory have shown that constitutive cyclin E expression can alleviate the requirement for cyclin D-CDK activity in the inactivation of the retinoblastoma protein (pRb). Rb(DeltaCDK), a mutant construct of pRb with 15 of the 16 CDK phosphorylation sites mutated to alanine represses activation of E2F by mitogen, despite cyclin E overexpression. However, restoration of the four cyclin E-CDK2 phosphorylation sites to Rb(DeltaCDK) renders this construct sensitive to inactivation by CDK phosphorylation. In the present study, we engage a "reverse mutational analysis" by restoring cyclin E-CDK2 phosphorylation sites to Rb(DeltaCDK) individually and in combinations in an attempt to discover phosphorylation sites on Rb that are critical for inactivation. Surprisingly, we report that, in both rodent and human cells, restoration of threonine-373 to Rb(DeltaCDK), alone or in combination with other phospho-restorations, results in a loss of the constitutively repressive effect of this construct on E2F activation. Further, induction of endogenous cyclin A protein is blocked by Rb(DeltaCDK), but not by mutants of Rb(DeltaCDK) containing a restored threonine-373. Finally, while S phase entry is blocked by expression of Rb(DeltaCDK), restoration of threonine-373 largely attenuates this effect. These findings reveal that phosphorylation of threonine-373 by CDK2-cyclin E represent a potentially crucial event in the inactivation of the pRb protein. |
Nucleocytoplasmic shuttling of the retinoblastoma tumor suppressor protein via Cdk phosphorylation-dependent nuclear export. | The retinoblastoma (RB) tumor suppressor protein is a negative regulator of cell proliferation that is functionally inactivated in the majority of human tumors. Elevated Cdk activity via RB pathway mutations is observed in virtually every human cancer. Thus, Cdk inhibitors have tremendous promise as anticancer agents although detailed mechanistic knowledge of their effects on RB function is needed to harness their full potential. Here, we illustrate a novel function for Cdks in regulating the subcellular localization of RB. We present evidence of significant cytoplasmic mislocalization of ordinarily nuclear RB in cells harboring Cdk4 mutations. Our findings uncover a novel mechanism to circumvent RB-mediated growth suppression by altered nucleocytoplasmic trafficking via the Exportin1 pathway. Cytoplasmically mislocalized RB could be efficiently confined to the nucleus by inhibiting the Exportin1 pathway, reducing Cdk activity, or mutating the Cdk-dependent phosphorylation sites in RB that result in loss of RB-Exportin1 association. Thus RB-mediated tumor suppression can be subverted by phosphorylation-dependent enhancement of nuclear export. These results support the notion that tumor cells can modulate the protein transport machinery thereby making the protein transport process a viable therapeutic target. |
The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. | The retinoblastoma tumor suppressor (RB) protein is functionally inactivated in the majority of human cancers and is aberrant in one-third of all breast cancers. RB regulates G(1)/S-phase cell-cycle progression and is a critical mediator of antiproliferative signaling. Here the specific impact of RB deficiency on E2F-regulated gene expression, tumorigenic proliferation, and the response to 2 distinct lines of therapy was investigated in breast cancer cells. RB knockdown resulted in RB/E2F target gene deregulation and accelerated tumorigenic proliferation, thereby demonstrating that even in the context of a complex tumor cell genome, RB status exerts significant control over proliferation. Furthermore, the RB deficiency compromised the short-term cell-cycle inhibition following cisplatin, ionizing radiation, and antiestrogen therapy. In the context of DNA-damaging agents, this bypass resulted in increased sensitivity to these agents in cell culture and xenograft models. In contrast, the bypass of antiestrogen signaling resulted in continued proliferation and xenograft tumor growth in the presence of tamoxifen. These effects of aberrations in RB function were recapitulated by ectopic E2F expression, indicating that control of downstream target genes was an important determinant of the observed responses. Specific analyses of an RB gene expression signature in 60 human patients indicated that deregulation of this pathway was associated with early recurrence following tamoxifen monotherapy. Thus, because the RB pathway is a critical determinant of tumorigenic proliferation and differential therapeutic response, it may represent a critical basis for directing therapy in the treatment of breast cancer. |
Altered structure and deregulated expression of the tumor suppressor gene retinoblastoma (RB1) in human brain tumors. | A total of 40 human brain tumor samples were analyzed for tumor-specific alterations at the RB1 gene locus. Gliomas were more prevalent in younger males and meningiomas in older females. Southern blot analysis revealed loss of heterozygosity (LOH) at the intron 1 locus of RB1 gene in 19.4% of informative cases and this is the first report showing LOH at this locus in human brain tumors. Levels of RB1 mRNA and protein, pRb, and the percentage of hyperphosphorylated form of pRb were also analyzed in these tumors. Normal human fibroblast cell line WI38 was used as control in northern and western analysis. Normal sized RB1 mRNA and protein were present in all the tumor samples. Majority of the gliomas had 2.0-fold or higher levels of RB1 mRNA and most meningiomas had less than 2.0-fold of RB1 mRNA compared to control WI38 cells. The total pRb levels were 2.0-fold or higher in all the tumor samples compared to control. More than 50% of pRb existed in hyperphosphorylated form in all gliomas except two. However, six out of 13 meningiomas had less than 50% of total pRb in the hyperphosphorylated form. These results indicate that the increased percentage of hyperphosphorylated form of pRb in gliomas could provide growth advantage to these tumors. Presence of LOH at the RB1 gene locus and the increased levels of RB1 RNA and protein and increased percentage of hyperphosphorylated form of pRb are indicative of an overall deregulation of pRb pathway in human brain tumors. |
Loss of the retinoblastoma tumor suppressor: differential action on transcriptional programs related to cell cycle control and immune function. | Functional inactivation of the retinoblastoma tumor suppressor gene product (RB) is a common event in human cancers. Classically, RB functions to constrain cellular proliferation, and loss of RB is proposed to facilitate the hyperplastic proliferation associated with tumorigenesis. To understand the repertoire of regulatory processes governed by RB, two models of RB loss were utilized to perform microarray analysis. In murine embryonic fibroblasts harboring germline loss of RB, there was a striking deregulation of gene expression, wherein distinct biological pathways were altered. Specifically, genes involved in cell cycle control and classically associated with E2F-dependent gene regulation were upregulated via RB loss. In contrast, a program of gene expression associated with immune function and response to pathogens was significantly downregulated with the loss of RB. To determine the specific influence of RB loss during a defined period and without the possibility of developmental compensation as occurs in embryonic fibroblasts, a second system was employed wherein Rb was acutely knocked out in adult fibroblasts. This model confirmed the distinct regulation of cell cycle and immune modulatory genes through RB loss. Analyses of cis-elements supported the hypothesis that the majority of those genes upregulated with RB loss are regulated via the E2F family of transcription factors. In contrast, those genes whose expression was reduced with the loss of RB harbored different promoter elements. Consistent with these analyses, we found that disruption of E2F-binding function of RB was associated with the upregulation of gene expression. In contrast, cells harboring an RB mutant protein (RB-750F) that retains E2F-binding activity, but is specifically deficient in the association with LXCXE-containing proteins, failed to upregulate these same target genes. However, downregulation of genes involved in immune function was readily observed with disruption of the LXCXE-binding function of RB. Thus, these studies demonstrate that RB plays a significant role in both the positive and negative regulations of transcriptional programs and indicate that loss of RB has distinct biological effects related to both cell cycle control and immune function. |
The expression level of the tumor suppressor retinoblastoma protein (Rb) influences the antileukemic efficacy of erucylphospho-N,N,N-trimethylpropylammonium (ErPC3). | The alkylphosphocholine erucylphospho-N,N,N-trimethylpropylammonium (ErPC3) is a promising new drug for treating various types of cancer. Its mechanism of action is not yet fully understood but is related to the Rb tumor suppressor protein. In the present study, we investigated the role of decreased Rb expression levels for the antileukemic efficacy of ErPC3 in BV-173 and K-562 CML-derived cell lines. We used antisense technique to knock down Rb levels in the two cell lines in addition to ErPC3 treatment. Cells with reduced Rb expression showed a diminished sensitivity to ErPC3 exposure, as determined by MTT (BV-173 and K-562) and clonogenicity assays (K-562 only), if concentrations below the IC50 were used. The feasibility of Rb knockdown varied between BV-173 and K-562 cells, with the former being distinctly more sensitive than the latter. We conclude that sufficient Rb levels are important for the cytotoxic and anticlonogenic effects of ErPC3 at levels below the IC(50), but that higher concentrations of ErPC3 are less dependent on Rb status. |
BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. | Hypoxia and nutrient deprivation are environmental stresses governing the survival and adaptation of tumor cells in vivo. We have identified a novel role for the Rb tumor suppressor in protecting against nonapoptotic cell death in the developing mouse fetal liver, in primary mouse embryonic fibroblasts, and in tumor cell lines. Loss of pRb resulted in derepression of BNip3, a hypoxia-inducible member of the Bcl-2 superfamily of cell death regulators. We identified BNIP3 as a direct target of pRB/E2F-mediated transcriptional repression and showed that pRB attenuates the induction of BNIP3 by hypoxia-inducible factor to prevent autophagic cell death. BNIP3 was essential for hypoxia-induced autophagy, and its ability to promote autophagosome formation was enhanced under conditions of nutrient deprivation. Knockdown of BNIP3 reduced cell death, and remaining deaths were necrotic in nature. These studies identify BNIP3 as a key regulator of hypoxia-induced autophagy and suggest a novel role for the RB tumor suppressor in preventing nonapoptotic cell death by limiting the extent of BNIP3 induction in cells. |
Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. | Human papillomavirus type 16 (HPV16) and other high-risk HPVs are etiologically linked to the development of cervical carcinomas and contribute to a number of other tumors of the anogenital tract, as well as oral cancers. The high-risk HPV E6 and E7 oncoproteins are consistently expressed in cervical cancer cells and are necessary for the induction and maintenance of the transformed phenotype. An important aspect of HPV16 E7s oncogenic activities is destabilization of the retinoblastoma tumor suppressor (pRB) through a ubiquitin/proteasome-dependent mechanism, although the exact molecular mechanism is unknown. Here, we report that HPV16 E7 is associated with an enzymatically active cullin 2 ubiquitin ligase complex and that the HPV16 E7/pRB complex contains cullin 2. Depletion of cullin 2 by RNA interference causes increased steady-state levels and stability of pRB in HPV16 E7-expressing cells, and ectopic expression of HPV16 E7 and the cullin 2 complex leads to pRB ubiquitination in vivo. Hence, we propose that the HPV16 E7-associated cullin 2 ubiquitin ligase complex contributes to aberrant degradation of the pRB tumor suppressor in HPV16 E7-expressing cells. |
RbAp48 is a critical mediator controlling the transforming activity of human papillomavirus type 16 in cervical cancer. | Although human papillomavirus (HPV) infections are the primary cause of cervical cancer, the molecular mechanism by which HPV induces cervical cancer remains largely unclear. We used two-dimensional electrophoresis with mass spectrometry to study protein expression profiling between HPV16-positive cervical mucosa epithelial H8 cells and cervical cancer Caski cells to identify 18 differentially expressed proteins. Among them, retinoblastoma-binding protein 4 (RbAp48) was selected, and its differentiation expression was verified with both additional cervical cancer-derived cell lines and human tissues of cervical intraepithelial neoplasia and cervical cancer. suppression of RbAp48 using small interfering RNA approach in H8 cells significantly stimulated cell proliferation and colony formation and inhibited senescence-like phenotype. Remarkably, H8 cells acquired transforming activity if RpAp48 was suppressed, because H8 cells stably transfected with RbAp48 small interfering RNA led to tumor formation in nude mice. In addition, overexpression of RbAp48 significantly inhibited cell growth and tumor formation. This RbAp48-mediated transformation of HPV16 is probably because of the regulation by RbAp48 of tumor suppressors retinoblastoma and p53, apoptosis-related enzymes caspase-3 and caspase-8, and oncogenic genes, including E6, E7, cyclin D1 (CCND1), and c-MYC. In brief, RbAp48, previously unknown in cervical carcinogenesis, was isolated in a global screen and identified as a critical mediator controlling the transforming activity of HPV16 in cervical cancer. |
Retinoblastoma tumor suppressor status is a critical determinant of therapeutic response in prostate cancer cells. | The retinoblastoma tumor suppressor protein (RB), a critical mediator of cell cycle progression, is functionally inactivated in the majority of human cancers, including prostatic adenocarcinoma. The importance of RB tumor suppressor function in this disease is evident because 25% to 50% of prostatic adenocarcinomas harbor aberrations in RB pathway. However, no previous studies challenged the consequence of RB inactivation on tumor cell proliferation or therapeutic response. Here, we show that RB depletion facilitates deregulation of specific E2F target genes, but does not confer a significant proliferative advantage in the presence of androgen. However, RB-deficient cells failed to elicit a cytostatic response (compared with RB proficient isogenic controls) when challenged with androgen ablation, AR antagonist, or combined androgen blockade. These data indicate that RB deficiency can facilitate bypass of first-line hormonal therapies used to treat prostate cancer. Given the established effect of RB on DNA damage checkpoints, these studies were then extended to determine the impact of RB depletion on the response to cytotoxic agents used to treat advanced disease. In this context, RB-deficient prostate cancer cells showed enhanced susceptibility to cell death induced by only a selected subset of cytotoxic agents (antimicrotubule agents and a topoisomerase inhibitor). Combined, these data indicate that RB depletion dramatically alters the cellular response to therapeutic intervention in prostate cancer cells and suggest that RB status could potentially be developed as a marker for effectively directing therapy. |
RB loss abrogates cell cycle control and genome integrity to promote liver tumorigenesis. | BACKGROUND & AIMS: The retinoblastoma (RB) tumor suppressor is functionally inactivated in most hepatocellular carcinomas (HCC), although the mechanisms by which RB suppresses liver tumorigenesis are poorly defined. We investigated the impact of RB loss on carcinogen-induced liver tumorigenesis. METHODS: Mice harboring liver-specific RB ablation and normal littermates were exposed to the hepatocarcinogen diethylnitrosamine (DEN). The influence of RB loss on liver tumorigenesis was assessed by evaluating tumor multiplicity, proliferation, and genome integrity within tumors arising in RB-deficient and wild-type livers. In silico analyses were used to probe the association between gene expression signatures for RB loss and chromosomal instability and the ability of genes up-regulated by RB loss to predict the survival of human HCC patients. RESULTS: RB deficiency significantly increased tumor multiplicity in livers exposed to DEN. Although hepatocytes in nontumor regions of DEN-exposed livers were quiescent regardless of RB status, tumors arising in RB-deficient livers were significantly more proliferative than those in normal livers and expressed high levels of RB/E2F target genes. Analysis of genes up-regulated by RB loss demonstrated significant overlap with a gene expression signature associated with chromosomal instability. Correspondingly, tumors arising in RB-deficient livers were significantly more likely to harbor hepatocytes exhibiting altered ploidy. Finally, gene expression analysis of human HCCs demonstrated that elevated expression of RB-regulated genes independently predicts poor survival. CONCLUSIONS: RB deletion in the mouse liver enhances DEN-induced tumorigenesis, associated with increased hepatocyte proliferation and compromised genome integrity. Evaluation of RB status may be a useful prognostic factor in human HCC. |
Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor. | The adenovirus (Ad) E1A (Ad-E1A) oncoprotein mediates cell transformation, in part, by displacing E2F transcription factors from the retinoblastoma protein (pRb) tumor suppressor. In this study we determined the crystal structure of the pRb pocket domain in complex with conserved region 1 (CR1) of Ad5-E1A. The structure and accompanying biochemical studies reveal that E1A-CR1 binds at the interface of the A and B cyclin folds of the pRb pocket domain, and that both E1A-CR1 and the E2F transactivation domain use similar conserved nonpolar residues to engage overlapping sites on pRb, implicating a novel molecular mechanism for pRb inactivation by a viral oncoprotein. |
The retinoblastoma tumor suppressor is a critical intrinsic regulator for hematopoietic stem and progenitor cells under stress. | The retinoblastoma tumor suppressor protein (RB) plays important roles in the control of the cell division cycle. It is estimated that RB is dysfunctional/inactivated in up to 40% of human leukemias. The consequences of loss of RB on hematopoietic stem and progenitor cell (HSPC) function in vivo are incompletely understood. Here, we report that mice genetically deficient in Rb in all hematopoietic cells (Vav-Cre Rb knockout [KO] animals) showed altered contribution of distinct hematopoietic cell lineages to peripheral blood, bone marrow, and spleen; significantly increased extramedullary hematopoiesis in the spleen; and a 2-fold increase in the frequency of hematopoietic progenitor cells in peripheral blood. Upon competitive transplantation, HSPCs from Vav-Cre Rb KO mice contributed with an at least 4- to 6-fold less efficiency to hematopoiesis compared with control cells. HSPCs deficient in Rb presented with impaired cell-cycle exit upon stress-induced proliferation, which correlated with impaired function. In summary, Rb is critical for hematopoietic stem and progenitor cell function, localization, and differentiation. |
Aberrant nucleocytoplasmic localization of the retinoblastoma tumor suppressor protein in human cancer correlates with moderate/poor tumor differentiation. | Inactivation of the retinoblastoma (RB) tumor suppressor pathway, via elevated cyclin-dependent kinase (CDK) activity, is observed in majority of human cancers. Since CDK deregulation is evident in most cancer cells, pharmacological CDK inhibition has become an attractive therapeutic strategy in oncology. We recently showed that an oncogenic CDK4(R24C) mutation alters the subcellular localization of the normally nuclear RB phosphoprotein. Here, using 71 human cancer cell lines and over 300 primary human cancer tissues, we investigated whether changes in RB subcellular localization occur during human cancer progression. We uncover that diverse human cancers and their derived cell lines, particularly those with poor tumor differentiation, display significant cytoplasmic mislocalization of ordinarily nuclear RB. The nucleocytoplasmically distributed RB was derived via CDK-dependent and Exportin1-mediated nuclear export. Indeed, cytoplasmically mislocalized RB could be efficiently confined to the nucleus by pharmacologically reducing CDK activity or by inhibiting the Exportin1-mediated nuclear export pathway. Our observations uncover a post-translational CDK-dependent mechanism of RB inactivation and suggest that cytoplasmically localized RB may harbor a tumor promoting function. We propose that RB inactivation, via aberrant nucleocytoplasmic transport, may disrupt normal cell differentiation programs and accelerate the cancer process. These results are evidence that tumor cells modulate the protein transport machinery thereby making the protein transport process a viable therapeutic target. |
Retinoblastoma tumor suppressor protein-dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. | The retinoblastoma tumor suppressor protein (pRb) is involved in mitotic exit, promoting the arrest of myoblasts, and myogenic differentiation. However, it is unclear how permanent cell cycle exit is maintained in differentiated muscle. Using RNA interference, expression profiling, and chromatin immunoprecipitations, we show that pRb is essential for cell cycle exit and the differentiation of myoblasts and is also uniquely required to maintain this arrest in myotubes. Remarkably, we also uncover a function for the pRb-related proteins p107 and p130 as enforcers of a G2/M phase checkpoint that prevents progression into mitosis in cells that have lost pRb. We further demonstrate that pRb effects permanent cell cycle exit in part by maintaining trimethylation of histone H3 lysine 27 (H3K27) on cell cycle genes. H3K27 trimethylation silences other genes, including Cyclin D1, in a pRb-independent but polycomb-dependent manner. Thus, our data distinguish two distinct chromatin-based regulatory mechanisms that lead to terminal differentiation. |
Loss of RB1 induces non-proliferative retinoma: increasing genomic instability correlates with progression to retinoblastoma. | Retinoblastoma clinical observations revealed the role of tumor suppressor genes in human cancer, Knudsons two-hit model of cancer induction. We now demonstrate that loss of both RB1 tumor suppressor gene alleles initiates quiescent RB1(-/-) retinomas with low level genomic instability and high expression of the senescence-associated proteins p16(INK4a) and p130. Although retinomas can remain unchanged throughout life, highly proliferative, clonal and aneuploid retinoblastomas commonly emerge, exhibiting altered gene copy number and expression of oncogenes (MYCN, E2F3, DEK, KIF14 and MDM4) and tumor suppressor genes (CDH11, p75(NTR)) and reduced expression of p16(INK4a) and p130. We suggest that RB1 inactivation in developing retina induces genomic instability, but senescence can block transformation at the stage of retinoma. However, stable retinoma is rarely clinically observed because progressive genomic instability commonly leads to highly proliferative retinoblastoma. |
Loss of retinoblastoma tumor suppressor protein makes human breast cancer cells more sensitive to antimetabolite exposure. | PURPOSE: The RB tumor-suppressor activity may influence the therapeutic response in human breast cancers. The effect of adjuvant therapy on clinical outcome of breast cancer patients was analyzed, and the sensitivity to 5-fluorouracil (5-FU) and methotrexate was investigated in MCF-7 and HCT-116 human cancer cells, according to their RB status. EXPERIMENTAL DESIGN: RB protein (pRB) expression was prospectively evaluated by immunocytochemistry in 518 consecutive patients and its predictive value was determined according to the adjuvant therapeutic treatments. MCF-7 and HCT-116 human cancer cells silenced for RB1 expression were treated with 5-FU and methotrexate, at the same concentrations and time exposures as determined in the interstitium of breast cancers of patients treated with adjuvant chemotherapy. RESULTS: Multivariate analysis of disease-free survival, including all the established clinical and histopathologic prognostic variables, indicated that the absence of pRB expression was the only predictive factor of good clinical outcome in patients treated with standard systemic chemotherapy (cyclophosphamide, methotrexate, and 5-FU) but not in patients treated with endocrine therapy alone. 5-FU and methotrexate significantly reduced the growth rate of RB1-silenced but not of control MCF-7 and HCT-116 cells. This was likely due to the absence of a DNA damage checkpoint with accumulation of DNA double-strand breaks in RB1-silenced but not in control cells. CONCLUSIONS: The absence of pRB expression renders human breast cancer cells more sensitive to 5-FU and methotrexate and predicts a good clinical outcome for patients treated with adjuvant chemotherapy. We suggest that patients with RB-negative breast cancers should be treated with systemic chemotherapy. |
Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: Implications for the response to hormonal therapy. | It is becoming increasingly apparent that the tumor microenvironment plays a critical role in human breast cancer onset and progression. Therefore, we isolated cancer-associated fibroblasts (CAFs) from human breast cancer lesions and studied their properties, as compared with normal mammary fibroblasts (NFs) isolated from the same patient. Here, we demonstrate that 8 out of 11 CAFs show dramatic downregulation of caveolin-1 (Cav-1) protein expression; Cav-1 is a well-established marker that is normally decreased during the oncogenic transformation of fibroblasts. Next, we performed gene expression profiling studies (DNA microarray) and established a CAF gene expression signature. Interestingly, the expression signature associated with CAFs encompasses a large number of genes that are regulated via the RB-pathway. The CAF gene signature is also predictive of poor clinical outcome in breast cancer patients that were treated with tamoxifen mono-therapy, indicating that CAFs may be useful for predicting the response to hormonal therapy. Finally, we show that replacement of Cav-1 expression in CAFs (using a cell-permeable peptide approach) is sufficient to revert their hyper-proliferative phenotype and prevent RB hyper-phosphorylation. Taken together, these studies highlight the critical role of Cav-1 downregulation in maintaining the abnormal phenotype of human breast cancer-associated fibroblasts. |
Retinoblastoma (Rb) tumor-suppressor pathway alterations in meningeal hemangiopericytomas: High E2F transcription factor 1 expression and loss of Rb expression: study by double immunofluorescence staining and laser-scanning confocal microscopy. | BACKGROUND: The authors analyzed the retinoblastoma (Rb) tumor-suppressor pathway in meningeal hemangiopericytomas (MHPCs). METHODS: : Immunohistochemical detection of the Rb pathway proteins (Rb; E2F transcription factor 1 [E2F1]; cyclins D1, D3, and E; cyclin-dependent kinase 4 [CDK4]; and the CDK4 inhibitor p16/INKa) was followed by double immunofluorescence (DIF) staining and laser-scanning confocal microscopy (LSCM) in 11 MHPC specimens and from 4 specimens of recurrent disease from 1, 2, and 4 recurrences (total, 18 specimens). RESULTS: : All specimens displayed Rb pathway alterations, including low or negative Rb protein expression (17 specimens), high Rb protein expression (1 specimen), and loss of p16/INK4a expression (17 specimens). High levels of positive cell-cycle regulators were observed for E2F1 (10 specimens), cyclin E (7 specimens), CDK4 (5 specimens), cyclin D3 (1 specimen), and cyclin D1 (1 specimen). DIF and LSCM revealed no or very weak Rb and E2F1 colocalization, indicating that Rb does not act as a growth suppressor. High levels of human mouse double-minute 2 (HDM2) expression were observed in a previous study of these tumors, and they displayed colocalization with E2F1 and Rb in the current study, which supports the argument that HDM2 activates E2F1 and inactivates Rb. CONCLUSIONS: : The current findings demonstrated that loss of Rb and p16/INKa expression and high E2F1 expression indicate impairment of the Rb suppressor pathway. HDM2 colocalization with E2F1 and Rb also indicates that Rb suppressor pathway inactivation and transactivation of DNA synthesis genes may play pathogenic roles in MHPCs. High expression levels of cyclin E, cyclin D1, cyclin D3, and CDK4 were associated with Rb suppressor pathway neutralization. |
Partial proteasome inhibition in human fibroblasts triggers accelerated M1 senescence or M2 crisis depending on p53 and Rb status. | Proteasome-dependent degradation has been extensively investigated and has been shown to play a vital role in the maintenance of cellular homeostasis. Proteasome activity and expression are reduced during aging and replicative senescence. Its activation has been shown to confer lifespan extension in human diploid fibroblasts (HDFs), whereas partial proteasome inhibition triggers an irreversible premature senescent state in young HDFs. As p53 and Rb tumor suppressors regulate both replicative and premature senescence (RS and PS, respectively), in this study we investigated their implication in proteasome inhibition-mediated PS. By taking advantage of a variety of HDFs with defective p53 or/and Rb pathways, we reveal that proteasome activity inhibition to levels normally found in senescent human cells results in immediate growth arrest and/or moderate increase of apoptotic death. These effects are independent of the cellular genetic context. However, in the long term, proteasome inhibition-mediated PS can only be initiated and maintained in the presence of functional p53. More specifically, we demonstrate that following partial proteasome inhibition, senescence is dominant in HDFs with functional p53 and Rb molecules, crisis/death is induced in cells with high p53 levels and defective Rb pathway, whereas stress recovery and restoration of normal cycling occurs in cells that lack functional p53. These data reveal the continuous interplay between the integrity of proteasome function, senescence and cell survival. |
Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. | The proper epigenetic modification of chromatin by protein arginine methyltransferases (PRMTs) is crucial for normal cell growth and health. The human SWI/SNF-associated PRMT5 is involved in the transcriptional repression of target genes by directly methylating H3R8 and H4R3. To further understand the impact of PRMT5-mediated histone methylation on cancer, we analyzed its expression in normal and transformed human B lymphocytes. Our findings reveal that PRMT5 protein levels are enhanced in various human lymphoid cancer cells, including transformed chronic lymphocytic leukemia (B-CLL) cell lines. PRMT5 overexpression is caused by the altered expression of the PRMT5-specific microRNAs 19a, 25, 32, 92, 92b, and 96 and results in the increased global symmetric methylation of H3R8 and H4R3. An evaluation of both epigenetic marks at PRMT5 target genes such as RB1 (p105), RBL1 (p107), and RBL2 (p130) showed that promoters H3R8 and H4R3 are hypermethylated, which in turn triggers pocket protein transcriptional repression. Furthermore, reducing PRMT5 expression in WaC3CD5 B-CLL cells abolishes H3R8 and H4R3 hypermethylation, restores RBL2 expression, and inhibits cancer cell proliferation. These results indicate that PRMT5 overexpression epigenetically alters the transcription of key tumor suppressor genes and suggest a causal role of the elevated symmetric methylation of H3R8 and H4R3 at the RBL2 promoter in transformed B-lymphocyte pathology. |
The extreme COOH terminus of the retinoblastoma tumor suppressor protein pRb is required for phosphorylation on Thr-373 and activation of E2F. | The retinoblastoma protein pRb plays a pivotal role in G(1)- to S-phase cell cycle progression and is among the most frequently mutated gene products in human cancer. Although much focus has been placed on understanding how the A/B pocket and COOH-terminal domain of pRb cooperate to relieve transcriptional repression of E2F-responsive genes, comparatively little emphasis has been placed on the function of the NH(2)-terminal region of pRb and the interaction of the multiple domains of pRb in the full-length context. Using "reverse mutational analysis" of Rb(DeltaCDK) (a dominantly active repressive allele of Rb), we have previously shown that restoration of Thr-373 is sufficient to render Rb(DeltaCDK) sensitive to inactivation via cyclin-CDK phosphorylation. This suggests that the NH(2)-terminal region plays a more critical role in pRb regulation than previously thought. In the present study, we have expanded this analysis to include additional residues in the NH(2)-terminal region of pRb and further establish that the mechanism of pRb inactivation by Thr-373 phosphorylation is through the dissociation of E2F. Most surprisingly, we further have found that removal of the COOH-terminal domain of either RbDeltaCDK(+T373) or wild-type pRb yields a functional allele that cannot be inactivated by phosphorylation and is repressive of E2F activation and S-phase entry. Our data demonstrate a novel function for the NH(2)-terminal domain of pRb and the necessity for cooperation of multiple domains for proper pRb regulation. |
Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses transcription of the tumor suppressor Rb gene via binding competition with Sp1 and recruitment of co-repressors. | FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Kruppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp -308 to -188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp -65 to -56) and GC-box 2 (bp -18 to -9), the latter of which is also bound by FBI-1. We found that FRE3 (bp -244 to -236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression. |
The retinoblastoma protein tumor suppressor is important for appropriate osteoblast differentiation and bone development. | mutation of the retinoblastoma (RB) tumor suppressor gene is strongly linked to osteosarcoma formation. This observation and the documented interaction between the retinoblastoma protein (pRb) and Runx2 suggests that pRb is important in bone development. To assess this hypothesis, we used a conditional knockout strategy to generate pRb-deficient embryos that survive to birth. Analysis of these embryos shows that Rb inactivation causes the abnormal development and impaired ossification of several bones, correlating with an impairment in osteoblast differentiation. We further show that Rb inactivation acts to promote osteoblast differentiation in vitro and, through conditional analysis, establish that this occurs in a cell-intrinsic manner. Although these in vivo and in vitro differentiation phenotypes seem paradoxical, we find that Rb-deficient osteoblasts have an impaired ability to exit the cell cycle both in vivo and in vitro that can explain the observed differentiation defects. Consistent with this observation, we show that the cell cycle and the bone defects in Rb-deficient embryos can be suppressed by deletion of E2f1, a known proliferation inducer that acts downstream of Rb. Thus, we conclude that pRb plays a key role in regulating osteoblast differentiation by mediating the inhibition of E2F and consequently promoting cell cycle exit. |
The tumor suppressor Pml regulates cell fate in the developing neocortex. | The control of cell fate in neural progenitor cells is critical for nervous system development. Nevertheless, the processes involved are only partially known. We found that the expression of the tumor suppressor Pml was restricted to neural progenitor cells (NPCs) in the developing neocortex of the mouse. Notably, in Pml(-/-) cortices, the overall number of proliferating NPCs was increased and transition between the two major progenitor types, radial glial cells and basal progenitors, was impaired. This in turn resulted in reduced differentiation and an overall decrease in the thickness of the cortex wall. In NPCs, Pml regulated the subcellular distribution of the retinoblastoma protein (pRb) and the protein phosphatase 1alpha, triggering pRb dephosphorylation. Together, these findings reveal an unexpected role of Pml in controlling the function of NPCs in the CNS. |
The chromatin remodelling factor BRG1 is a novel binding partner of the tumor suppressor p16INK4a. | BACKGROUND: CDKN2A/p16INK4a is frequently altered in human cancers and it is the most important melanoma susceptibility gene identified to date. p16INK4a inhibits pRb phosphorylation and induces cell cycle arrest, which is considered its main tumour suppressor function. Nevertheless, additional activities may contribute to the tumour suppressor role of p16INK4a and could help explain its specific association with melanoma predisposition. To identify such functions we conducted a yeast-two-hybrid screen for novel p16INK4a binding partners. RESULTS: We now report that p16INK4a interacts with the chromatin remodelling factor BRG1. We investigated the cooperative roles of p16INK4a and BRG1 using a panel of cell lines and a melanoma cell model with inducible p16INK4a expression and BRG1 silencing. We found evidence that BRG1 is not required for p16INK4a-induced cell cycle inhibition and propose that the p16INK4a-BRG1 complex regulates BRG1 chromatin remodelling activity. Importantly, we found frequent loss of BRG1 expression in primary and metastatic melanomas, implicating this novel p16INK4a binding partner as an important tumour suppressor in melanoma. CONCLUSION: This data adds to the increasing evidence implicating the SWI/SNF chromatin remodelling complex in tumour development and the association of p16INK4a with chromatin remodelling highlights potentially new functions that may be important in melanoma predisposition and chemoresistance. |
Aurora B kinase regulates the postmitotic endoreduplication checkpoint via phosphorylation of the retinoblastoma protein at serine 780. | The phenotypic change characteristic of Aurora B inhibition is the induction of polyploidy. Utilizing specific siRNA duplexes and a selective small molecule inhibitor (AZD1152) to inhibit Aurora B activity in tumor cells, we sought to elucidate the mechanism by which Aurora B inhibition results in polyploidy. Cells treated with AZD1152 progressed through mitosis with misaligned chromosomes and exited without cytokinesis and subsequently underwent endoreduplication of DNA despite activation of a p53-dependent pseudo G1 checkpoint. Concomitant with polyploid cell formation, we observed the appearance of Rb hypophosphorylation, an event that occurred independently of cyclin-dependent kinase inhibition. We went on to discover that Aurora B directly phosphorylates Rb at serine 780 both in vitro and in vivo. This novel interaction plays a critical role in regulating the postmitotic checkpoint to prevent endoreduplication after an aberrant mitosis. Thus, we propose for the first time that Aurora B determines cellular fate after an aberrant mitosis by directly regulating the Rb tumor suppressor protein. |
Proapoptotic function of the retinoblastoma tumor suppressor protein. | The retinoblastoma protein (pRB) tumor suppressor blocks cell proliferation by repressing the E2F transcription factors. This inhibition is relieved through mitogen-induced phosphorylation of pRB, triggering E2F release and activation of cell-cycle genes. E2F1 can also activate proapoptotic genes in response to genotoxic or oncogenic stress. However, pRBs role in this context has not been established. Here we show that DNA damage and E1A-induced oncogenic stress promote formation of a pRB-E2F1 complex even in proliferating cells. Moreover, pRB is bound to proapoptotic promoters that are transcriptionally active, and pRB is required for maximal apoptotic response in vitro and in vivo. Together, these data reveal a direct role for pRB in the induction of apoptosis in response to genotoxic or oncogenic stress. |
Mouse fibroblasts lacking RB1 function form spheres and undergo reprogramming to a cancer stem cell phenotype. | Activation of the RB1 pathway triggers the cell-cycle arrest that mediates cell-cell contact inhibition. Accordingly, mutation of all three RB1 family members leads to loss of contact inhibition and outgrowth of fibroblasts into spheres where cell-cell contacts predominate. We present evidence that such outgrowth triggers reprogramming to generate cells with properties of cancer stem cells. Fibroblasts with only a single RB1 mutation remain contact inhibited; however, if this contact inhibition is bypassed by forcing the RB1(-/-) cells to form spheres in suspension, cells with properties of cancer stem cells are also generated. These cells not only form tumors in nude mice but also generate differentiated cells. We propose that contact inhibition imposed by the RB1 pathway performs an unexpected tumor suppressor function by preventing cell outgrowth into structures where cells with properties of cancer stem cells can be generated from differentiated somatic cells in advancing cancers. |
The role of the retinoblastoma/E2F1 tumor suppressor pathway in the lesion recognition step of nucleotide excision repair. | The retinoblastoma Rb/E2F tumor suppressor pathway plays a major role in the regulation of mammalian cell cycle progression. The pRb protein, along with closely related proteins p107 and p130, exerts its anti-proliferative effects by binding to the E2F family of transcription factors known to regulate essential genes throughout the cell cycle. We sought to investigate the role of the Rb/E2F1 pathway in the lesion recognition step of nucleotide excision repair (NER) in mouse embryonic fibroblasts (MEFs). Rb-/-, p107-/-, p130-/- MEFs repaired both cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) at higher efficiency than did wildtype cells following UV-C irradiation. The expression of damaged DNA binding gene DDB2 involved in the DNA lesion recognition step was elevated in the Rb family-deficient MEFs. To determine if the enhanced DNA repair in the absence of the Rb gene family is due to the derepression of E2F1, we assayed the ability of E2F1-deficient cells to repair damaged DNA and demonstrated that E2F1-/- MEFs are impaired for the removal of both CPDs and 6-4PPs. Furthermore, wildtype cells induced a higher expression of DDB2 and xeroderma pigmentosum gene XPC transcript levels than did E2F1-/- cells following UV-C irradiation. Using an E2F SiteScan algorithm, we uncovered a putative E2F-responsive element in the XPC promoter upstream of the transcription start site. We showed with chromatin immunoprecipitation assays the binding of E2F1 to the XPC promoter in a UV-dependent manner, suggesting that E2F1 is a transcriptional regulator of XPC. Our study identifies a novel E2F1 gene target and further supports the growing body of evidence that the Rb/E2F1 tumor suppressor pathway is involved in the regulation of the DNA lesion recognition step of nucleotide excision repair. |
Modeling the effect of the RB tumor suppressor on disease progression: dependence on oncogene network and cellular context. | The retinoblastoma tumor suppressor, RB, is a key regulator of cellular proliferation that is functionally inactivated at high frequency in human cancer. Although RB has been extensively studied with regard to tumor etiology, loss of tumor-suppressor function often occurs relatively late in tumor progression. Therefore, inactivation of RB could have a profound impact on the behavior of tumors driven by discrete oncogenes. Here, collaboration between Ras or c-Myc deregulation and RB functional state was investigated in a model of conditional genetic deletion to decipher the effects related to disease progression. These studies showed that RB loss had a robust impact on mitogen dependence, anchorage dependence and overall survival, which was significantly modified by oncogene activation. Specifically, RB deficiency predisposed c-Myc-expressing cells to cell death and reduced overall tumorigenic proliferation. In contrast, RB deficiency exacerbated the tumorigenic behavior of Ras-transformed cells in both the model system and human tumor cell lines. As these tumors exhibited highly aggressive behavior, the possibility of exploiting the intrinsic sensitivity to cell death with RB loss was evaluated. Particularly, although Ras-transformed, RB-deficient cells bypassed the G1-checkpoint elicited by pharmacological activation of the p53 pathway, they were also highly sensitized to cell death. Altogether, these data suggest that the impact of RB deletion is dependent on the oncogene milieu, and can directly contribute to transformed phenotypes and response to therapeutic intervention. |
Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. | H19 is an imprinted oncofetal non-coding RNA recently shown to be the precursor of miR-675. The pathophysiological roles of H19 and its mature product miR-675 to carcinogenesis have, however, not been defined. By quantitative reverse transcription-polymerase chain reaction, both H19 and miR-675 were found to be upregulated in human colon cancer cell lines and primary human colorectal cancer (CRC) tissues compared with adjacent non-cancerous tissues. Subsequently, the tumor suppressor retinoblastoma (RB) was confirmed to be a direct target of miR-675 as the microRNA suppressed the activity of the luciferase reporter carrying the 3-untranslated region of RB messenger RNA that contains the miR-675-binding site. suppression of miR-675 by transfection with anti-miR-675 increased RB expression and at the same time, decreased cell growth and soft agar colony formation in human colon cancer cells. Reciprocally, enhanced miR-675 expression by transfection with miR-675 precursor decreased RB expression, increased tumor cell growth and soft agar colony formation. Moreover, the inverse relationship between the expressions of RB and H19/miR-675 was also revealed in human CRC tissues and colon cancer cell lines. Our findings demonstrate that H19-derived miR-675, through downregulation of its target RB, regulates the CRC development and thus may serve as a potential target for CRC therapy. |
Construction of a dual affinity tagged allele of the Rb1 tumor suppressor gene in the mouse. | Loss of Rb1 tumor suppressor gene function is involved in the genesis of most human cancers. Novel therapies targeting Rb1 have been slow to develop because of our incomplete understanding of its molecular mechanisms of action. Rb1 protein (pRb) binds a host of cellular genes and proteins, and these molecular interactions mediate its various functions. Given the potential complexity of these molecular interactions and the lack of established methods for pRb purification, it has been difficult to systematically identify gene and protein interactions relevant to tumor suppression in different tissues in vivo. To address this limitation, we have generated a dual affinity tagged Rb1 allele in the mouse. The tagged allele functions as wild type and the encoded protein can be purified by tandem affinity chromatography. This allele will facilitate identification and characterization of native pRb molecular interactions in any tissue accessible in the mouse. |
Gadd45b mediates Fas-induced apoptosis by enhancing the interaction between p38 and retinoblastoma tumor suppressor. | Gadd45b has been known as a positive mediator of apoptosis induced by certain cytokines and oncogenes. Here, we identified Gadd45b as an effector of Fas-induced apoptosis and found that p38-mediated Rb hyperphosphorylation is one of the mechanisms of Fas-induced apoptosis in murine hepatocyte AML12 cells. Gadd45b has been shown to activate p38 through its physical interaction with MTK1 and induce apoptosis. However, in this study, we have showed that the function of Gadd45b during Fas-induced apoptosis in AML12 cells is different from that reported in previous studies. Depletion of Gadd45b expression did not inhibit the phosphorylation of p38, but it suppressed p38-mediated Rb phosphorylation and apoptosis in response to Fas stimulation by reducing the interaction between p38 and Rb. Ectopic expression of Gadd45b was sufficient to enhance this interaction. These findings suggest that Gadd45b mediates p38-induced Rb phosphorylation by enhancing the interaction between p38 and Rb during Fas-induced apoptosis in murine hepatocytes. |
The tumor suppressor Rb and its related Rbl2 genes are regulated by Utx histone demethylase. | Utx is a candidate tumor suppressor gene that encodes histone H3 lysine 27 (H3K27) demethylase. In this study, we found that ectopic expression of Utx enhanced the expression of retinoblastoma tumor suppressor gene Rb and its related gene Rbl2. This activation was dependent on the demethylase activity of Utx, and was suggested to contribute to the decreased cell proliferation induced by Utx. A chromatin immunoprecipitation assay showed that over-expressed Utx was associated with the promoter regions of Rb and Rbl2 resulting in the removal of repressive H3K27 tri-methylation and the increase in active H3K4 tri-methylation. Furthermore, siRNA-mediated knockdown of Utx revealed the recruitment of endogenous Utx protein on the promoters of Rb and Rbl2 genes. These results indicate that Rb and Rbl2 are downstream target genes of Utx and may play important roles in Utx-mediated cell growth control. |
Methylation of the retinoblastoma tumor suppressor by SMYD2. | The retinoblastoma tumor suppressor (RB) is a central cell cycle regulator and tumor suppressor. RB cellular functions are known to be regulated by a diversity of post-translational modifications such as phosphorylation and acetylation, raising the possibility that RB may also be methylated in cells. Here we demonstrate that RB can be methylated by SMYD2 at lysine 860, a highly conserved and novel site of modification. This methylation event occurs in vitro and in cells, and it is regulated during cell cycle progression, cellular differentiation, and in response to DNA damage. Furthermore, we show that RB monomethylation at lysine 860 provides a direct binding site for the methyl-binding domain of the transcriptional repressor L3MBTL1. These results support the idea that a code of post-translational modifications exists for RB and helps guide its functions in mammalian cells. |
miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. | microRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) that regulate gene expression by repressing translation or triggering the degradation of complementary mRNA sequences. Certain miRNAs have been shown to function as integral components of the p53 and/or retinoblastoma (Rb) regulatory networks. As such, miRNA dysregulation can have a profound effect on cancer development. Previous studies have shown that miR-449a is down-regulated in human prostate cancer tissue and possesses potential tumor suppressor function. In the present study, we identify miR-449a-mediated growth arrest in prostate cancer cells is dependent on the Rb protein. We show that mutant Rb prostate cancer cells (DU- 145) are resistant to cell cycle arrest and cellular senescence induced by miR- 449a, while overexpression of wild-type Rb in DU-145 sublines (DU-1.1 and B5) restores miR-449a function. In silico analysis of 3UTR regions reveal a putative miR-449a target site in the transcript of Cyclin D1 (CCND1); an oncogene involved in directly regulating Rb activity and cell cycle progression. Luciferase 3UTR reporter constructs and inhibitory oligonucleotides confirm that Cyclin D1 is a direct downstream target of miR-449a. We also reveal that miR-449a suppresses Rb phosphorylation through the knockdown of Cyclin D1 and previously validated target HDAC1. By targeting genes involved in controlling Rb activity, miR- 449a regulates growth and senescence in an Rb-dependent manner. These data indicate that miR-449a is a miRNA component of the Rb pathway and its tumor suppressor-like effects, in part, depends on Rb status in prostate cancer cells. |
The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. | Retinoblastoma (RB; encoded by RB1) is a tumor suppressor that is frequently disrupted in tumorigenesis and acts in multiple cell types to suppress cell cycle progression. The role of RB in tumor progression, however, is poorly defined. Here, we have identified a critical role for RB in protecting against tumor progression through regulation of targets distinct from cell cycle control. In analyses of human prostate cancer samples, RB loss was infrequently observed in primary disease and was predominantly associated with transition to the incurable, castration-resistant state. Further analyses revealed that loss of the RB1 locus may be a major mechanism of RB disruption and that loss of RB function was associated with poor clinical outcome. Modeling of RB dysfunction in vitro and in vivo revealed that RB controlled nuclear receptor networks critical for tumor progression and that it did so via E2F transcription factor 1-mediated regulation of androgen receptor (AR) expression and output. Through this pathway, RB depletion induced unchecked AR activity that underpinned therapeutic bypass and tumor progression. In agreement with these findings, disruption of the RB/E2F/nuclear receptor axis was frequently observed in the transition to therapy resistance in human disease. Together, these data reveal what we believe to be a new paradigm for RB function in controlling prostate tumor progression and lethal tumor phenotypes. |
Direct and indirect effects of the pRb tumor suppressor on autophagy. | Autophagy, an intracellular degradation pathway involved in cell survival or demise, is tightly controlled by complex regulatory mechanisms. A link between the Rb tumor suppressor and autophagy is now emerging. pRb plays a critical role in cell cycle progression and survival as well as the differentiation of certain cell types. Recently, we have reported that during skeletal myogenesis, Rb-deficient myoblasts fuse to form short myotubes that quickly degenerate. Myotube degeneration was associated with increased autophagic flux and inhibition of autophagy rescued the defect leading to long, twitching myotubes. We propose that Rb-loss sensitizes cells to autophagy via direct and indirect mechanisms and we discuss how these might affect cancer progression and response to chemotherapy. |
miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. | Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target the retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G(2)/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the beta2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The beta2 adrenergic pathway may play an important role in this novel mechanism. |
Loss of heterozygosity of tumor suppressor genes (p16, Rb, E-cadherin, p53) in hypopharynx squamous cell carcinoma. | OBJECTIVE: Microsatellite alterations, especially those that cause loss of heterozygosity (LOH), have recently been postulated as a novel mechanism of carcinogenesis and a useful prognostic factor in many kinds of malignant tumors. However, few studies have focused on a specific site, hypopharynx. The aim of this study was to evaluate the relationship between LOH and hypopharyngeal squamous cell carcinoma (HPSCC). STUDY DESIGN: Laboratory-based study. SETTING: Integrated health care system. SUBJECTS AND METHODS: Matched normal and cancerous tissues from 30 patients with HPSCC were examined for LOH in 4 tumor suppressor genes (TSGs) (p16, Rb, E-cadherin, and p53) at loci 9p21, 13q21, 6q22, and 17p13, respectively, using microsatellite markers amplified by polymerase chain reaction. The results for each loci were compared with clinicopathological features. RESULTS: Among the 30 cases, 26 (86.7%) exhibited LOH, with the most common alteration being LOH at p53 (52.6%). Significantly higher rates of LOH detection were seen in Rb, p53, and the LOH-high group (cases where 2 or more loci with LOH were found) in cases of lymph node metastasis. Compared with stage I and II carcinoma, tumors of stages III and IV had significantly higher frequencies of LOH in Rb, p53, and the LOH-high group. However, the presence of LOH was not significantly correlated with survival. CONCLUSION: These results suggest that LOH in TSGs such as Rb and p53 may contribute to the development and progression of HPSCC. The presence of LOH in the primary tumor may also be predictive of lymph node metastasis. |
A kinase shRNA screen links LATS2 and the pRB tumor suppressor. | pRB-mediated inhibition of cell proliferation is a complex process that depends on the action of many proteins. However, little is known about the specific pathways that cooperate with the Retinoblastoma protein (pRB) and the variables that influence pRBs ability to arrest tumor cells. Here we describe two shRNA screens that identify kinases that are important for pRB to suppress cell proliferation and pRB-mediated induction of senescence markers. The results reveal an unexpected effect of LATS2, a component of the Hippo pathway, on pRB-induced phenotypes. Partial knockdown of LATS2 strongly suppresses some pRB-induced senescence markers. Further analysis shows that LATS2 cooperates with pRB to promote the silencing of E2F target genes, and that reduced levels of LATS2 lead to defects in the assembly of DREAM (DP, RB [retinoblastoma], E2F, and MuvB) repressor complexes at E2F-regulated promoters. Kinase assays show that LATS2 can phosphorylate DYRK1A, and that it enhances the ability of DYRK1A to phosphorylate the DREAM subunit LIN52. Intriguingly, the LATS2 locus is physically linked with RB1 on 13q, and this region frequently displays loss of heterozygosity in human cancers. Our results reveal a functional connection between the pRB and Hippo tumor suppressor pathways, and suggest that low levels of LATS2 may undermine the ability of pRB to induce a permanent cell cycle arrest in tumor cells. |
Spinophilin acts as a tumor suppressor by regulating Rb phosphorylation. | The scaffold protein Spinophilin (SPN) is a regulatory subunit of phosphatase1a located at 17q21.33. This region is frequently associated with microsatellite instability and LOH containing a relatively high density of known tumor suppressor genes, including BRCA1. Several linkage studies have suggested the existence of an unknown tumor suppressor gene distal to BRCA1. Spn may be this gene, but the mechanism through which this gene makes its contribution to cancer has not been described. In this study, we aimed to determine how loss of Spn may contribute to tumorigenesis. We explored the contribution of SPN to PP1a-mediated Rb regulation. We found that the loss of Spn downregulated PPP1CA and PP1a activity, resulting in a high level of phosphorylated Rb and increased ARF and p53 activity. However, in the absence of p53, reduced levels of SPN enhanced the tumorigenic potential of the cells. Furthermore, the ectopic expression of SPN in human tumor cells greatly reduced cell growth. Taken together, our results demonstrate that the loss of Spn induces a proliferative response by increasing Rb phosphorylation, which, in turn, activates p53, thereby neutralizing the proliferative response. We suggest that Spn may be the tumor suppressor gene located at 17q21.33 acting through Rb regulation. |
The retinoblastoma tumor suppressor regulates a xenobiotic detoxification pathway. | The retinoblastoma tumor suppressor (pRb) regulates cell cycle entry, progression and exit by controlling the activity of the E2F-family of transcription factors. During cell cycle exit pRb acts as a transcriptional repressor by associating with E2F proteins and thereby inhibiting their ability to stimulate the expression of genes required for S phase. Indeed, many tumors harbor mutations in the RB gene and the pRb-E2F pathway is compromised in nearly all types of cancers. In this report we show that both pRb and its interacting partners, the transcriptional factors E2F1-2-3, act as positive modulators of detoxification pathways important for metabolizing and clearing xenobiotics--such as toxins and drugs--from the body. Using a combination of conventional molecular biology techniques and microarray analysis of specific cell populations, we have analyzed the detoxification pathway in murine samples in the presence or absence of pRb and/or E2F1-2-3. In this report, we show that both pRb and E2F1-2-3 act as positive modulators of detoxification pathways in mice, challenging the conventional view of E2F1-2-3 as transcriptional repressors negatively regulated by pRb. These results suggest that mutations altering the pRb-E2F axis may have consequences beyond loss of cell cycle control by altering the ability of tissues to remove toxins and to properly metabolize anticancer drugs, and might help to understand the formation and progression rates of different types of cancer, as well as to better design appropriate therapies based on the particular genetic composition of the tumors. |
Clinical stratification of glioblastoma based on alterations in retinoblastoma tumor suppressor protein (RB1) and association with the proneural subtype. | A recent study of CDK4/6 inhibitors in glioblastoma (GBM) xenografts identified retinoblastoma tumor suppressor protein RB1 status as a determinant of tumor therapeutic efficacy. Because of the need for clinically applicable RB1 testing, we assessed the utility of 2 complementary methods for determining RB1 status in GBM. Using fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC), we analyzed 34 GBMs that had also undergone molecular characterization as part of The cancer Genome Atlas (TCGA). By IHC, 4 tumors (11.8%) had complete loss of RB protein expression, including 2 with homozygous deletion of RB1 by FISH and 1 with hemizygous deletion of RB1 by FISH combined with a novel nonsense mutation in RB1. Consistent with these results, in an independent set of 51 GBMs tested by IHC, we demonstrated loss of RB1 protein in 5 (9.8%). In GBM molecular subtype analysis of TCGA data, complete loss of RB1 transcript expression was seen in 18 (10.6%) of 170 tumors, and these were highly enriched for, but not exclusive to, the proneural subtype (p < 0.01). These data support the use of IHC for determining RB1 status in clinical GBM specimens and suggest that RB1 alterations may be more common in certain GBM subgroups. |
Tumor suppressor gene expression during normal and pathologic myocardial growth. | Previous studies have identified several host proteins (p53, p107, and p193), which form prominent complexes with SV40 T antigen in transformed cardiomyocytes. expression of p53 and p107 was monitored during normal and pathologic growth in nontransformed murine myocardium. Both genes were expressed at relatively high levels in embryonic cardiomyocytes. Transcript levels decreased markedly during the process of cardiomyocyte terminal differentiation and were very low or undetectable in adult animals. In contrast, retinoblastoma transcripts were observed at low levels throughout myocardial development. None of the tumor suppressor genes examined were transcriptionally activated during acute myocardial overload or isoproterenol-induced myocardial hypertrophy. The potential role of tumor suppressor gene product expression in myocardial development and pathology is discussed. |
Tumor suppressor gene mutations in mice. | Over the past several years, a number of human tumor suppressor genes have been cloned and characterized. Germline mutations in tumor suppressor genes strongly predispose to cancer, and they are also mutated somatically in sporadic forms of the disease. In order to create animal models for the familial cancer syndromes caused by inherited mutations in these genes as well as to determine their role in embryogenesis, the homologues of several members of this class have been mutated in the mouse. The initial characterization of the heterozygous and homozygous phenotypes caused by these mutations has led to important insights into the mechanisms by which tumor suppressor genes participate in normal development and how their loss contributes to tumorigenesis. |
Flp-mediated tissue-specific inactivation of the retinoblastoma tumor suppressor gene in the mouse. | The yeast-derived Flp-frt site-specific DNA recombination system was used to achieve pituitary-specific inactivation of the retinoblastoma (Rb) tumor suppressor gene. Whereas mice carrying only frt sites in both alleles of Rb remain tumor free, tumorigenesis ensues when the Flp recombinase is expressed. The rate of tumorigenesis in these mice depends both on the expression level of the Flp recombinase and on the presence of frt sites in one or both Rb alleles. This permitted a more accurate definition of the consecutive steps in pituitary tumorigenesis. Our study illustrates the potential of this approach for studying sporadic cancer in a defined mouse model. |
Retinoblastoma, a tumor suppressor, is a coactivator for the androgen receptor in human prostate cancer DU145 cells. | The retinoblastoma protein may function as a tumor suppressor by controlling the progression of the normal cell cycle. Inactivation of Rb has been regarded as an important event in prostate carcinogenesis. However, the detailed mechanism of how Rb is linked to androgen-androgen receptor (A-AR), the major factor in promotion of prostate tumor growth, remains unclear. Using GST-Rb pull down assay and mammalian two-hybrid system, we report here that Rb can bind specifically to AR in an androgen-independent manner. Transient transfection assay demonstrates that cotransfection of AR and Rb can further induce AR transcriptional activity 4-fold in the presence of 1 nM dihydrotestosterone in DU145 cells. Interestingly, cotransfection of Rb and ARA70, the first identified AR coactivator, with AR can additively induce AR transcriptional activity 13-fold (from 5-fold to 64-fold). In conclusion, our discovery that Rb can function as a coactivator to induce AR transcriptional activity in prostate cells may represent the first data to link a negative growth regulatory protein function in a positive manner, by inducing the transcriptional activity of AR. |