1Schizophr. Res. 2008 Dec 106: 229-36
PMID18790604
TitleLevels of [(3)H]pirenzepine binding in Brodmann's area 6 from subjects with schizophrenia is not associated with changes in the transcription factor SP1 or BACE1.
AbstractDecreased muscarinic M1 receptor (CHRM1) mRNA has been reported in Brodmann's area (BA) 6 from subjects with schizophrenia. We have extended this study by measuring levels of CHRM1 ([(3)H]pirenzepine binding), CHRM3 ([(3)H]4-DAMP binding), the transcription factor SP1 and the CHRM1 downstream target beta-site APP-cleaving enzyme 1 (BACE1) in BA 6 from 19 subjects with schizophrenia and 19 control subjects. Radioligand binding was quantified using either in situ radioligand binding with autoradiography or, in cohorts of 10 control subjects and 10 subjects with schizophrenia, membrane enriched fraction (MEF) CNS ([(3)H]pirenzepine binding only). Levels of SP1 and BACE1 were measured by Western blotting. [(3)H]pirenzepine binding to tissue sections was in two layers, binding to tissue sections (Binding layer 1: p<0.01; Binding layer 2: p<0.001) and MEF (p<0.05) were decreased in schizophrenia. Levels of [(3)H]4-DAMP binding, SP1 and BACE1 were not altered in subjects with the disorder. This study shows a decrease in levels of CHRM1 in BA 6 from subjects with schizophrenia; as CHRM1 and BA 6 are important in maintaining normal cognitive function, these data support the hypothesis that decreased levels of cortical CHRM1 may contribute to the cognitive deficits associated with schizophrenia. Our findings on BACE1 suggest that the schizophrenia phenotype reported in BACE(-/-) mice is not simply due to lack of that protein in the cortex.
SCZ Keywordsschizophrenia, schizophrenic
2Hum Psychopharmacol 2014 Jul 29: 336-41
PMID25163438
TitlePolymorphism in alpha 2A adrenergic receptor gene is associated with sialorrhea in schizophrenia patients on clozapine treatment.
AbstractClozapine-induced sialorrhea (CIS) is a common, inconvenient and socially stigmatizing adverse effect. The pathophysiology of CIS may be related to the effect of clozapine on the muscarinic and adrenergic receptors as well as the disruption of the circadian rhythms. The aim of this study was to find out if polymorphisms in muscarinic M1 and M3 receptor genes (CHRM1 and CHRM3), adrenoceptor alpha 2A gene (ADRA2A) or clock circadian regulator gene (CLOCK) are associated with CIS.
Two hundred and thirty-seven clozapine-treated Finnish schizophrenia patients were genotyped for CHRM1, CHRM3, CLOCK and ADRA2A polymorphisms, and their salivary dysfunction was assessed with two questions. Twenty-six of these patients had previously been on medication to treat CIS. Comparisons of the genotypes between patients with excessive versus non-excessive salivation were analysed. Genotype distributions between patients and control group and haplotypes were also studied.
CHRM1, CHRM3 and CLOCK polymorphisms and haplotypes were not associated with CIS. ADRA2A (rs1800544) genotype was associated with CIS (p?=?0.029). In patients with CIS, CC genotype (n?=?103) was more common than in G-allele carriers (n?=?79) (p?=?0.013, OR 2.13, 95% CI: 1.17-3.88). No differences were found in the distributions of genotypes between patients and controls.
ADRA2A genotype was associated with CIS.
SCZ Keywordsschizophrenia, schizophrenic
3Schizophr. Res. 2014 Sep 158: 247-54
PMID25037527
TitleAn investigation of the factors that regulate muscarinic receptor expression in schizophrenia.
AbstractWe previously identified a group of subjects with schizophrenia who, on average, have a 75% decrease in cholinergic receptor, muscarinic 1 (CHRM1) in Brodmann's area (BA) 9. To extend this finding, we determined i) if the decrease in CHRM1 was present in another functionally related CNS region (BA6), ii) whether the marked decrease in CHRM1 was accompanied by changes in levels of other CHRMs and iii) potential factors responsible for the decreased CHRM1 expression. We measured CHRM1 and CHRM3 using in situ radioligand binding with [(3)H]pirenzepine and [(3)H]4-DAMP respectively in BA6 from 20 subjects with schizophrenia who had low levels of CHRM1 in BA9 (SzLow[(3)H]PZP), 18 subjects with schizophrenia whose levels of CHRM1 were similar to controls (SzNormal[(3)H]PZP) and 20 control subjects. Levels of CHRM1, 3 and 4 mRNA were measured using qPCR and levels of the transcription factors, SP1 and SP3, were determined using Western blots. In BA6, the density of [(3)H]pirenzepine binding was decreased in subjects with SzLow[(3)H]PZP (p<0.001) compared to controls. The density of [(3)H]4-DAMP binding, levels of CHRM1, 3 and 4 mRNA and levels of SP1 and SP3 was not significantly different between the three groups. This study shows that the previously identified decrease in CHRM1 expression is not confined to the dorsolateral prefrontal cortex but is present in other cortical areas. The effect shows some specificity to CHRM1, with no change in levels of binding to CHRM3. Furthermore, this decrease in CHRM1 does not appear to be associated with low levels of CHRM1 mRNA or to simply be regulated by the transcription factors, SP1 and SP3, suggesting that other mechanisms are responsible for the decreased CHRM1 in these subjects.
SCZ Keywordsschizophrenia, schizophrenic
4Psychol Med 2016 May 46: 1523-34
PMID26959877
TitleThe CHRM3 gene is implicated in abnormal thalamo-orbital frontal cortex functional connectivity in first-episode treatment-naive patients with schizophrenia.
AbstractThe genetic influences in human brain structure and function and impaired functional connectivities are the hallmarks of the schizophrenic brain. To explore how common genetic variants affect the connectivities in schizophrenia, we applied genome-wide association studies assaying the abnormal neural connectivities in schizophrenia as quantitative traits.
We recruited 161 first-onset and treatment-naive patients with schizophrenia and 150 healthy controls. All the participants underwent scanning with a 3 T-magnetic resonance imaging scanner to acquire structural and functional imaging data and genotyping using the HumanOmniZhongHua-8 BeadChip. The brain-wide association study approach was employed to account for the inherent modular nature of brain connectivities.
We found differences in four abnormal functional connectivities [left rectus to left thalamus (REC.L-THA.L), left rectus to right thalamus (REC.L-THA.R), left superior orbital cortex to left thalamus (ORBsup.L-THA.L) and left superior orbital cortex to right thalamus (ORBsup.L-THA.R)] between the two groups. Univariate single nucleotide polymorphism (SNP)-based association revealed that the SNP rs6800381, located nearest to the CHRM3 (cholinergic receptor, muscarinic 3) gene, reached genomic significance (p = 1.768 10-8) using REC.L-THA.R as the phenotype. Multivariate gene-based association revealed that the FAM12A (family with sequence similarity 12, member A) gene nearly reached genomic significance (nominal p = 2.22 10-6, corrected p = 0.05).
Overall, we identified the first evidence that the CHRM3 gene plays a role in abnormal thalamo-orbital frontal cortex functional connectivity in first-episode treatment-naive patients with schizophrenia. Identification of these genetic variants using neuroimaging genetics provides insights into the causes of variability in human brain development, and may help us determine the mechanisms of dysfunction in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
5Psychol Med 2016 May 46: 1523-34
PMID26959877
TitleThe CHRM3 gene is implicated in abnormal thalamo-orbital frontal cortex functional connectivity in first-episode treatment-naive patients with schizophrenia.
AbstractThe genetic influences in human brain structure and function and impaired functional connectivities are the hallmarks of the schizophrenic brain. To explore how common genetic variants affect the connectivities in schizophrenia, we applied genome-wide association studies assaying the abnormal neural connectivities in schizophrenia as quantitative traits.
We recruited 161 first-onset and treatment-naive patients with schizophrenia and 150 healthy controls. All the participants underwent scanning with a 3 T-magnetic resonance imaging scanner to acquire structural and functional imaging data and genotyping using the HumanOmniZhongHua-8 BeadChip. The brain-wide association study approach was employed to account for the inherent modular nature of brain connectivities.
We found differences in four abnormal functional connectivities [left rectus to left thalamus (REC.L-THA.L), left rectus to right thalamus (REC.L-THA.R), left superior orbital cortex to left thalamus (ORBsup.L-THA.L) and left superior orbital cortex to right thalamus (ORBsup.L-THA.R)] between the two groups. Univariate single nucleotide polymorphism (SNP)-based association revealed that the SNP rs6800381, located nearest to the CHRM3 (cholinergic receptor, muscarinic 3) gene, reached genomic significance (p = 1.768 10-8) using REC.L-THA.R as the phenotype. Multivariate gene-based association revealed that the FAM12A (family with sequence similarity 12, member A) gene nearly reached genomic significance (nominal p = 2.22 10-6, corrected p = 0.05).
Overall, we identified the first evidence that the CHRM3 gene plays a role in abnormal thalamo-orbital frontal cortex functional connectivity in first-episode treatment-naive patients with schizophrenia. Identification of these genetic variants using neuroimaging genetics provides insights into the causes of variability in human brain development, and may help us determine the mechanisms of dysfunction in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic