1Med. Hypotheses 2006 -1 67: 427-8
PMID16644139
TitleSchizophrenia and cancer risk: can the CCR5-delta 32 chemokine receptor gene mutation play a role?
Abstract-1
SCZ Keywordsschizophrenia
2Am J Psychiatry 2006 Mar 163: 507-11
PMID16513874
TitleAssociation between the CCR5 32-bp deletion allele and late onset of schizophrenia.
AbstractThe 32-bp deletion allele in chemokine receptor CCR5 has been associated with several immune-mediated diseases and might be implicated in schizophrenia as well.
The authors genotyped DNA samples from 268 schizophrenia patients and 323 healthy subjects. Age at first admission to a psychiatric hospital department served as a measure of disease onset.
Patients and comparison subjects differed marginally in their genotype distribution, with a slightly higher frequency of the deletion allele seen in the patients. The authors found the deletion allele to be associated with higher age at first admission. After age at first admission was analyzed as a continuous variable, it was dichotomized using 40 years as the cutoff. With this approach the authors found that genotype distributions of patients with age at first admission above the cutoff (possible cases of late-onset schizophrenia) and healthy subjects differed significantly. This was reflected in an increased frequency of the deletion allele in the patient subgroup. Patients with ages at first admission below and above 40 years significantly differed in distribution of genotypes and alleles, with an overrepresentation of the deletion allele in the latter subgroup of patients.
These findings suggest that the CCR5 32-bp deletion allele is a susceptibility factor for schizophrenia with late onset. Alternatively, the CCR5 32-bp deletion allele may act as a modifier by delaying the onset of schizophrenia without affecting the disease susceptibility.
SCZ Keywordsschizophrenia
3Schizophr Bull 2009 Nov 35: 1163-82
PMID18552348
TitleSchizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii.
AbstractMany genes implicated in schizophrenia can be related to glutamatergic transmission and neuroplasticity, oligodendrocyte function, and other families clearly related to neurobiology and schizophrenia phenotypes. Others appear rather to be involved in the life cycles of the pathogens implicated in the disease. For example, aspartylglucosaminidase (AGA), PLA2, SIAT8B, GALNT7, or B3GAT1 metabolize chemical ligands to which the influenza virus, herpes simplex, cytomegalovirus (CMV), rubella, or Toxoplasma gondii bind. The epidermal growth factor receptor (EGR/EGFR) is used by the CMV to gain entry to cells, and a CMV gene codes for an interleukin (IL-10) mimic that binds the host cognate receptor, IL10R. The fibroblast growth factor receptor (FGFR1) is used by herpes simplex. KPNA3 and RANBP5 control the nuclear import of the influenza virus. Disrupted in schizophrenia 1 (DISC1) controls the microtubule network that is used by viruses as a route to the nucleus, while DTNBP1, MUTED, and BLOC1S3 regulate endosomal to lysosomal routing that is also important in viral traffic. Neuregulin 1 activates ERBB receptors releasing a factor, EBP1, known to inhibit the influenza virus transcriptase. Other viral or bacterial components bind to genes or proteins encoded by CALR, FEZ1, FYN, HSPA1B, IL2, HTR2A, KPNA3, MED12, MED15, MICB, NQO2, PAX6, PIK3C3, RANBP5, or TP53, while the cerebral infectivity of the herpes simplex virus is modified by Apolipoprotein E (APOE). Genes encoding for proteins related to the innate immune response, including cytokine related (CCR5, CSF2RA, CSF2RB, IL1B, IL1RN, IL2, IL3, IL3RA, IL4, IL10, IL10RA, IL18RAP, lymphotoxin-alpha, tumor necrosis factor alpha [TNF]), human leukocyte antigen (HLA) antigens (HLA-A10, HLA-B, HLA-DRB1), and genes involved in antigen processing (angiotensin-converting enzyme and tripeptidyl peptidase 2) are all concerned with defense against invading pathogens. Human microRNAs (Hsa-mir-198 and Hsa-mir-206) are predicted to bind to influenza, rubella, or poliovirus genes. Certain genes associated with schizophrenia, including those also concerned with neurophysiology, are intimately related to the life cycles of the pathogens implicated in the disease. Several genes may affect pathogen virulence, while the pathogens in turn may affect genes and processes relevant to the neurophysiology of schizophrenia. For such genes, the strength of association in genetic studies is likely to be conditioned by the presence of the pathogen, which varies in different populations at different times, a factor that may explain the heterogeneity that plagues such studies. This scenario also suggests that drugs or vaccines designed to eliminate the pathogens that so clearly interact with schizophrenia susceptibility genes could have a dramatic effect on the incidence of the disease.
SCZ Keywordsschizophrenia
4Transl Psychiatry 2014 -1 4: e406
PMID24984193
TitleIncreased M1/decreased M2 signature and signs of Th1/Th2 shift in chronic patients with bipolar disorder, but not in those with schizophrenia.
AbstractWe here present data on immune gene expression of chemokines, chemokine receptors, cytokines and regulatory T-cell (T-reg) markers in chronic patients suffering from either schizophrenia (SCZ, N=20) or bipolar disorder (BD=20) compared with healthy controls (HCs, N=20). We extracted RNA from peripheral blood mononuclear cells and performed real-time (RT)-PCR to measure mRNA levels of chemokines, chemokine receptors, cytokines and T-reg markers. All the analyses were Bonferroni-corrected. The classical monocyte activation (M1) markers il6, ccl3 were significantly increased in BD as compared with both HC and SCZ patients (P=0.03 and P=0.002; P=0.024 and P=0.021, respectively), whereas markers of alternative (M2) monocyte activation ccl1, ccl22 and il10 were coherently decreased (controls: P=0.01, P=0.001 and P=0.09; SCZ subjects: P=0.02, P=0.05 and P=0.011, respectively). Concerning T-cell markers, BD patients had compared with HC downregulated CCR5 (P=0.02) and upregulated il4 (P=0.04) and compared with both healthy and SCZ individuals downregulated ccl2 (P=0.006 and P=0.003) and tgf? (P=0.004 and P=0.007, respectively). No significant associations were found between any immune gene expression and clinical variables (prior hospitalizations, Brief Psychiatric Rating Scale, medications' dosages and lifetime administration). Although some markers are expressed by different immune cell types, these findings suggest a coherent increased M1/decrease M2 signature in the peripheral blood of BD patients with potential Th1/Th2 shift. In contrast, all the explored immune marker levels were preserved in SCZ. Further larger studies are needed to investigate the relevance of inflammatory response in BD, trying to correlate it to psychopathology, treatment and outcome measures and, possibly, to brain connectivity.
SCZ Keywordsschizophrenia
5Schizophr. Res. 2015 Feb 161: 215-21
PMID25487697
TitleInnate immune response is differentially dysregulated between bipolar disease and schizophrenia.
Abstractschizophrenia (SZ) and bipolar disorder (BD) are severe psychiatric conditions with a neurodevelopmental component. Genetic findings indicate the existence of an overlap in genetic susceptibility across the disorders. Also, image studies provide evidence for a shared neurobiological basis, contributing to a dimensional diagnostic approach. This study aimed to identify the molecular mechanisms that differentiate SZ and BD patients from health controls but also that distinguish both from health individuals. Comparison of gene expression profiling in post-mortem brains of both disorders and health controls (30 cases), followed by a further comparison between 29 BD and 29 SZ revealed 28 differentially expressed genes. These genes were used in co-expression analysesthat revealed the pairs CCR1/SERPINA1, CCR5/HCST, C1QA/CD68, CCR5/S100A11 and SERPINA1/TLR1 as presenting the most significant difference in co-expression between SZ and BD. Next, a protein-protein interaction (PPI) network using the 28 differentially expressed genes as seeds revealed CASP4, TYROBP, CCR1, SERPINA1, CCR5 and C1QA as having a central role in the diseases manifestation. Both co-expression and network topological analyses pointed to genes related to microglia functions. Based on this data, we suggest that differences between SZ and BP are due to genes involved with response to stimulus, defense response, immune system process and response to stress biological processes, all having a role in the communication of environmental factors to the cells and associated to microglia.
SCZ Keywordsschizophrenia
6Nord J Psychiatry 2016 Feb -1: 1-6
PMID26906930
TitleChemokine gene variants in schizophrenia.
AbstractBackground Chemokines are known to play a major role in driving inflammation and immune responses in several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and Parkinson's disease. Inflammation has also been implicated in the pathogenesis of schizophrenia. Aim We aimed to investigate a potential link between chemokines and schizophrenia and analyze the role of MCP-1-A2518G, SDF-1-3'A, CCR5-delta32, CCR5-A55029G, CXCR4-C138T and CCR2-V64I gene polymorphisms in the Turkish population. Methods Genotyping was conducted by PCR-RFLP based on 140 patients and 123 unrelated healthy controls to show the relation between chemokine gene variants and schizophrenia risk. Results Frequencies of CCR5-A55029G A genotypes and CCR5-A55029G AG genotypes were found higher in patients than the controls and even also CCR2-V64I WT: CCR5-A55029G A and CCR2-V64I 64I: CCR5-A55029G A haplotypes significantly associated according to Bonferroni correction. However, no significant association was found for any of the other polymorphisms with the risk of schizophrenia. Conclusions Our findings suggest that CCR5-A55029G polymorphisms and CCR2-V64I WT: CCR5-A55029G A and CCR2-V64I 64I: CCR5-A55029G A haplotypes might have association with schizophrenia pathogenesis.
SCZ Keywordsschizophrenia
7J. Alzheimers Dis. 2016 Mar 52: 581-608
PMID27031468
TitleThe Zebrafish Equivalent of Alzheimer's Disease-Associated PRESENILIN Isoform PS2V Regulates Inflammatory and Other Responses to Hypoxic Stress.
AbstractDominant mutations in the PRESENILIN genes PSEN1 and PSEN2 cause familial Alzheimer's disease (fAD) that usually shows onset before 65 years of age. In contrast, genetic variation at the PSEN1 and PSEN2 loci does not appear to contribute to risk for the sporadic, late onset form of the disease (sAD), leading to doubts that these genes play a role in the majority of AD cases. However, a truncated isoform of PSEN2, PS2V, is upregulated in sAD brains and is induced by hypoxia and high cholesterol intake. PS2V can increase ?-secretase activity and suppress the unfolded protein response (UPR), but detailed analysis of its function has been hindered by lack of a suitable, genetically manipulable animal model since mice and rats lack this PRESENILIN isoform. We recently showed that zebrafish possess an isoform, PS1IV, that is cognate to human PS2V. Using an antisense morpholino oligonucleotide, we can block specifically the induction of PS1IV that normally occurs under hypoxia. Here, we exploit this ability to identify gene regulatory networks that are modulated by PS1IV. When PS1IV is absent under hypoxia-like conditions, we observe changes in expression of genes controlling inflammation (particularly sAD-associated IL1B and CCR5), vascular development, the UPR, protein synthesis, calcium homeostasis, catecholamine biosynthesis, TOR signaling, and cell proliferation. Our results imply an important role for PS2V in sAD as a component of a pathological mechanism that includes hypoxia/oxidative stress and support investigation of the role of PS2V in other diseases, including schizophrenia, when these are implicated in the pathology.
SCZ Keywordsschizophrenia