1Curr. Drug Metab. 2007 Apr 8: 245-66
PMID17430113
TitlePharmacological targeting of IDO-mediated tolerance for treating autoimmune disease.
AbstractCells at the maternal-fetal interface express indoleamine 2,3 dioxygenase (IDO) to consume all local tryptophan for the express purpose of starving adjacent maternal T cells of this most limiting and essential amino acid. This stops local T cell proliferation to ultimately result in the most dramatic example of immune tolerance, acceptance of the fetus. By contrast, inhibition of IDO using 1-methyl-tryptophan causes a sudden catastrophic rejection of the mammalian fetus. Immunomodulatory factors including IFNgamma, TNFalpha, IL-1, and LPS use IDO induction in responsive antigen presenting cells (APCs) also to transmit tolerogenic signals to T cells. Thus it makes sense to consider IDO induction towards tolerance for autoimmune diseases in general. Approaches to cell specific therapeutic IDO induction with NAD precursor supplementation to prevent the collateral non-T cell pathogenesis due to chronic TNFalpha-IDO activated tryptophan depletion in autoimmune diseases are reviewed. Tryptophan is an essential amino acid most immediately because it is the only precursor for the endogenous biosynthesis of nicotinamide adenine dinucleotide (NAD). Both autoimmune disease and the NAD deficiency disease pellagra occur in women at greater than twice the frequency of occurrence in men. The importance of IDO dysregulation manifest as autoimmune pellagric dementia is genetically illustrated for Nasu-Hakola Disease (or PLOSL), which is caused by a mutation in the IDO antagonizing genes TYROBP/DAP12 or TREM2. Loss of function leads to psychotic symptoms rapidly progressing to presenile dementia likely due to unchecked increases in microglial IDO expression, which depletes neurons of tryptophan causing neurodegeneration. Administration of NAD precursors rescued entire mental hospitals of dementia patients literally overnight in the 1930's and NAD precursors should help Nasu-Hakola patients as well. NAD depletion mediated by peroxynitrate PARP1 activation is one of the few established mechanisms of necrosis. Chronic elevation of TNFalpha leading to necrotic events by NAD depletion in autoimmune disease likely occurs via combination of persistent IDO activation and iNOS-peroxynitrate activation of PARP1 both of which deplete NAD. Pharmacological doses of NAD precursors repeatedly provide dramatic therapeutic benefit for rheumatoid arthritis, type 1 diabetes, multiple sclerosis, colitis, other autoimmune diseases, and schizophrenia in either the clinic or animal models. Collectively these observations support the idea that autoimmune disease may in part be considered as localized pellagra manifesting symptoms particular to the inflamed target tissues. Thus pharmacological doses of NAD precursors (nicotinic acid/niacin, nicotinamide/niacinamide, or nicotinamide riboside) should be considered as potentially essential to the therapeutic success of any IDO-inducing regimen for treating autoimmune diseases. Distinct among the NAD precursors, nicotinic acid specifically activates the g-protein coupled receptor (GPCR) GPR109a to produce the IDO-inducing tolerogenic prostaglandins PGE(2) and PGD(2). Next, PGD(2) is converted to the anti-inflammatory prostaglandin, 15d-PGJ(2). These prostaglandins exert potent anti-inflammatory activities through endogenous signaling mechanisms involving the GPCRs EP2, EP4, and DP1 along with PPARgamma respectively. Nicotinamide prevents type 1 diabetes and ameliorates multiple sclerosis in animal models, while nothing is known about the therapeutic potential of nicotinamide riboside. Alternatively the direct targeting of the non-redox NAD-dependent proteins using resveratrol to activate SIRT1 or PJ34 in order to inhibit PARP1 and prevent autoimmune pathogenesis are also given consideration.
SCZ Keywordsschizophrenia
2Neuropharmacology 2013 Dec 75: 233-45
PMID23958448
TitleActive DNA demethylation in post-mitotic neurons: a reason for optimism.
AbstractOver the last several years proteins involved in base excision repair (BER) have been implicated in active DNA demethylation. We review the literature supporting BER as a means of active DNA demethylation, and explain how the various components function and cooperate to remove the potentially most enduring means of epigenetic gene regulation. Recent evidence indicates that the same pathways implicated during periods of widespread DNA demethylation, such as the erasure of methyl marks in the paternal pronucleus soon after fertilization, are operational in post-mitotic neurons. Neuronal functional identities, defined here as the result of a combination of neuronal subtype, location, and synaptic connections are largely maintained through DNA methylation. Chronic mental illnesses, such as schizophrenia, may be the result of both altered neurotransmitter levels and neurons that have assumed dysfunctional neuronal identities. A limitation of most current psychopharmacological agents is their focus on the former, while not addressing the more profound latter pathophysiological process. Previously, it was believed that active DNA demethylation in post-mitotic neurons was rare if not impossible. If this were the case, then reversing the factors that maintain neuronal identity, would be highly unlikely. The emergence of an active DNA demethylation pathway in the brain is a reason for great optimism in psychiatry as it provides a means by which previously pathological neurons may be reprogrammed to serve a more favorable role. Agents targeting epigenetic processes have shown much promise in this regard, and may lead to substantial gains over traditional pharmacological approaches.
SCZ Keywordsschizophrenia