1Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008 Sep 147B: 759-68
PMID18163523
TitleRegulation of a novel alphaN-catenin splice variant in schizophrenic smokers.
AbstractThe alphaN-catenin (CTNNA2) gene represents a promising candidate gene for schizophrenia based upon previous genetic linkage, expression, and mouse knockout studies. CTNNA2 is differentially regulated by smoking in schizophrenic patients. In this report, the genomic structure of a primate-specific alphaN-catenin splice variant (alphaN-catenin III) is described. A comparison of alphaN-catenin III mRNA expression across postmortem hippocampi from schizophrenic and non-mentally ill smokers and non-smokers revealed a significant decrease in expression among patient non-smokers compared to all other groups. The recent evolutionary divergence of this gene, as well as the differences in gene expression in postmortem brain of schizophrenic non-smokers, supports the role of alphaN-catenin III as a novel disease susceptibility gene.
SCZ Keywordsschizophrenia, schizophrenic
2Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008 Sep 147B: 759-68
PMID18163523
TitleRegulation of a novel alphaN-catenin splice variant in schizophrenic smokers.
AbstractThe alphaN-catenin (CTNNA2) gene represents a promising candidate gene for schizophrenia based upon previous genetic linkage, expression, and mouse knockout studies. CTNNA2 is differentially regulated by smoking in schizophrenic patients. In this report, the genomic structure of a primate-specific alphaN-catenin splice variant (alphaN-catenin III) is described. A comparison of alphaN-catenin III mRNA expression across postmortem hippocampi from schizophrenic and non-mentally ill smokers and non-smokers revealed a significant decrease in expression among patient non-smokers compared to all other groups. The recent evolutionary divergence of this gene, as well as the differences in gene expression in postmortem brain of schizophrenic non-smokers, supports the role of alphaN-catenin III as a novel disease susceptibility gene.
SCZ Keywordsschizophrenia, schizophrenic
3J. Hum. Genet. 2010 May 55: 285-92
PMID20339380
TitleAn integrated genomic analysis of gene-function correlation on schizophrenia susceptibility genes.
Abstractschizophrenia is a highly complex inheritable disease characterized by numerous genetic susceptibility elements, each contributing a modest increase in risk for the disease. Although numerous linkage or association studies have identified a large set of schizophrenia-associated loci, many are controversial. In addition, only a small portion of these loci overlaps with the large cumulative pool of genes that have shown changes of expression in schizophrenia. Here, we applied a genomic gene-function approach to identify susceptibility loci that show direct effect on gene expression, leading to functional abnormalities in schizophrenia. We carried out an integrated analysis by cross-examination of the literature-based susceptibility loci with the schizophrenia-associated expression gene list obtained from our previous microarray study (Journal of Human Genetics (2009) 54: 665-75) using bioinformatic tools, followed by confirmation of gene expression changes using qPCR. We found nine genes (CHGB, SLC18A2, SLC25A27, ESD, C4A/C4B, TCP1, CHL1 and CTNNA2) demonstrate gene-function correlation involving: synapse and neurotransmission; energy metabolism and defense mechanisms; and molecular chaperone and cytoskeleton. Our findings further support the roles of these genes in genetic influence and functional consequences on the development of schizophrenia. It is interesting to note that four of the nine genes are located on chromosome 6, suggesting a special chromosomal vulnerability in schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
4Biochem. Biophys. Res. Commun. 2011 Jul 411: 56-61
PMID21708131
TitleBidirectional transcription from human LRRTM2/CTNNA1 and LRRTM1/CTNNA2 gene loci leads to expression of N-terminally truncated CTNNA1 and CTNNA2 isoforms.
Abstract?-Catenins (CTNNAs) are essential for the regulation of cell-cell and cell-matrix interactions in tissues. All human CTNNA genes contain antisense oriented leucine rich repeat transmembrane (LRRTM) genes within their seventh introns. Recently, a haplotype upstream of one of the human LRRTM genes, LRRTM1 that resides in CTNNA2, was shown to be associated with handedness and schizophrenia. Here, we show that both CTNNA1 and CTNNA2 contain alternative 5' exons linked to bidirectional promoters that are shared with the antisense oriented LRRTM2 and LRRTM1 genes, respectively. We demonstrate that bidirectional activity of these promoters results in alternative CTNNA1 and CTNNA2 transcripts that are expressed at high levels in the nervous system and show that N-terminally truncated CTNNA1 and CTNNA2 proteins lacking the ?-catenin interaction domain are produced from these alternative CTNNA mRNAs. In addition, our results indicate that the haplotype that affects LRRTM1 expression and is associated with schizophrenia and handedness, could also influence the expression of brain-enriched alternative transcripts of CTNNA2.
SCZ Keywordsschizophrenia, schizophrenic
5J. Neurogenet. 2011 Oct 25: 88-103
PMID21797804
TitleDevelopment of patient-specific neurons in schizophrenia using induced pluripotent stem cells.
AbstractInduced pluripotent stem cell (iPSC) technology has the potential to transform regenerative medicine. It also offers a powerful tool for establishing in vitro models of disease, in particular, for neuropsychiatric disorders where live human neurons are essentially impossible to procure. Using iPSCs derived from three schizophrenia (SZ) patients, one of whom has 22q11.2del (velocardiofacial syndrome; VCFS), the authors developed a culture system to study SZ on a molecular and cellular level. SZ iPSCs were differentiated into functional, primarily glutamatergic neurons that were able to fire action potentials after ?8 weeks in culture. Early differentiating neurons expressed a number of transcription factors/chromatin remodeling proteins and synaptic proteins relevant to SZ pathogenesis, including ZNF804A, RELN, CNTNAP2, CTNNA2, SMARCA2, and NRXN1. Although a small number of lines were developed in this preliminary study, the SZ line containing 22q11.2del showed a significant delay in the reduction of endogenous OCT4 and NANOG expression that normally occurs during differentiation. Constitutive expression of OCT4 has been observed in Dgcr8-deficient mouse embryonic stem cells (mESCs); DGCR8 maps to the 22q11.2-deleted region. These findings demonstrate that the method of inducing neural differentiation employed is useful for disease modeling in SZ and that the transition of iPSCs with 22q11.2 deletions towards a differentiated state may be marked by subtle changes in expression of pluripotency-associated genes.
SCZ Keywordsschizophrenia, schizophrenic
6PLoS ONE 2014 -1 9: e89910
PMID24587117
TitleOrigin and loss of nested LRRTM/?-catenin genes during vertebrate evolution.
AbstractLeucine-rich repeat transmembrane neuronal proteins (LRRTMs) form in mammals a family of four postsynaptic adhesion proteins, which have been shown to bind neurexins and heparan sulphate proteoglycan (HSPG) glypican on the presynaptic side. Mutations in the genes encoding LRRTMs and neurexins are implicated in human cognitive disorders such as schizophrenia and autism. Our analysis shows that in most jawed vertebrates, lrrtm1, lrrtm2, and lrrtm3 genes are nested on opposite strands of large conserved intron of ?-catenin genes CTNNA2, ctnna1, and ctnna3, respectively. No lrrtm genes could be found in tunicates or lancelets, while two lrrtm genes are found in the lamprey genome, one of which is adjacent to a single ctnna homolog. Based on similar highly positive net charge of lamprey LRRTMs and the HSPG-binding LRRTM3 and LRRTM4 proteins, we speculate that the ancestral LRRTM might have bound HSPG before acquiring neurexins as binding partners. Our model suggests that lrrtm gene translocated into the large ctnna intron in early vertebrates, and that subsequent duplications resulted in three lrrtm/ctnna gene pairs present in most jawed vertebrates. However, we detected three prominent exceptions: (1) the lrrtm3/ctnna3 gene structure is absent in the ray-finned fish genomes, (2) the genomes of clawed frogs contain ctnna1 but lack the corresponding nested (lrrtm2) gene, and (3) contain lrrtm3 gene in the syntenic position but lack the corresponding host (ctnna3) gene. We identified several other protein-coding nested gene structures of which either the host or the nested gene has presumably been lost in the frog or chicken lineages. Interestingly, majority of these nested genes comprise LRR domains.
SCZ Keywordsschizophrenia, schizophrenic
7Schizophr. Res. 2016 Jan 170: 30-40
PMID26597662
TitleGenetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study.
AbstractThe Consortium on the Genetics of schizophrenia Family Study (COGS-1) has previously reported our efforts to characterize the genetic architecture of 12 primary endophenotypes for schizophrenia. We now report the characterization of 13 additional measures derived from the same endophenotype test paradigms in the COGS-1 families. Nine of the measures were found to discriminate between schizophrenia patients and controls, were significantly heritable (31 to 62%), and were sufficiently independent of previously assessed endophenotypes, demonstrating utility as additional endophenotypes. Genotyping via a custom array of 1536 SNPs from 94 candidate genes identified associations for CTNNA2, ERBB4, GRID1, GRID2, GRIK3, GRIK4, GRIN2B, NOS1AP, NRG1, and RELN across multiple endophenotypes. An experiment-wide p value of 0.003 suggested that the associations across all SNPs and endophenotypes collectively exceeded chance. Linkage analyses performed using a genome-wide SNP array further identified significant or suggestive linkage for six of the candidate endophenotypes, with several genes of interest located beneath the linkage peaks (e.g., CSMD1, DISC1, DLGAP2, GRIK2, GRIN3A, and SLC6A3). While the partial convergence of the association and linkage likely reflects differences in density of gene coverage provided by the distinct genotyping platforms, it is also likely an indication of the differential contribution of rare and common variants for some genes and methodological differences in detection ability. Still, many of the genes implicated by COGS through endophenotypes have been identified by independent studies of common, rare, and de novo variation in schizophrenia, all converging on a functional genetic network related to glutamatergic neurotransmission that warrants further investigation.
SCZ Keywordsschizophrenia, schizophrenic