1Hum. Mol. Genet. 2006 Oct 15: 3041-54
PMID16980328
TitleDysbindin-1 is a synaptic and microtubular protein that binds brain snapin.
AbstractVariations in the gene encoding the novel protein dysbindin-1 (DTNBP1) are among the most commonly reported genetic variations associated with schizophrenia. Recent studies show that those variations are also associated with cognitive functioning in carriers with and without psychiatric diagnoses, suggesting a general role for dysbindin-1 in cognition. Such a role could stem from the protein's known ability to affect neuronal glutamate release. How dysbindin-1 might affect glutamate release nevertheless remains unknown without the discovery of the protein's neuronal binding partners and its subcellular locus of action. We demonstrate here that SNAPIN is a binding partner of dysbindin-1 in vitro and in the brain. Tissue fractionation of whole mouse brains and human hippocampal formations revealed that both dysbindin-1 and SNAPIN are concentrated in tissue enriched in synaptic vesicle membranes and less commonly in postsynaptic densities. It is not detected in presynaptic tissue fractions lacking synaptic vesicles. Consistent with that finding, immunoelectron microscopy showed that dysbindin-1 is located in (i) synaptic vesicles of axospinous terminals in the dentate gyrus inner molecular layer and CA1 stratum radiatum and in (ii) postsynaptic densities and microtubules of dentate hilus neurons and CA1 pyramidal cells. The labeled synapses are often asymmetric with thick postsynaptic densities suggestive of glutamatergic synapses, which are likely to be derived from dentate mossy cells and CA3 pyramidal cells. The function of dysbindin-1 in presynaptic, postsynaptic and microtubule locations may all be related to known functions of SNAPIN.
SCZ Keywordsschizophrenia, schizophrenic
2Biochem. J. 2006 May 395: 587-98
PMID16448387
TitleReinvestigation of the dysbindin subunit of BLOC-1 (biogenesis of lysosome-related organelles complex-1) as a dystrobrevin-binding protein.
AbstractDysbindin was identified as a dystrobrevin-binding protein potentially involved in the pathogenesis of muscular dystrophy. Subsequently, genetic studies have implicated variants of the human dysbindin-encoding gene, DTNBP1, in the pathogeneses of Hermansky-Pudlak syndrome and schizophrenia. The protein is a stable component of a multisubunit complex termed BLOC-1 (biogenesis of lysosome-related organelles complex-1). In the present study, the significance of the dystrobrevin-dysbindin interaction for BLOC-1 function was examined. Yeast two-hybrid analyses, and binding assays using recombinant proteins, demonstrated direct interaction involving coiled-coil-forming regions in both dysbindin and the dystrobrevins. However, recombinant proteins bearing the coiled-coil-forming regions of the dystrobrevins failed to bind endogenous BLOC-1 from HeLa cells or mouse brain or muscle, under conditions in which they bound the Dp71 isoform of dystrophin. Immunoprecipitation of endogenous dysbindin from brain or muscle resulted in robust co-immunoprecipitation of the pallidin subunit of BLOC-1 but no specific co-immunoprecipitation of dystrobrevin isoforms. Within BLOC-1, dysbindin is engaged in interactions with three other subunits, named pallidin, SNAPIN and muted. We herein provide evidence that the same 69-residue region of dysbindin that is sufficient for dystrobrevin binding in vitro also contains the binding sites for pallidin and SNAPIN, and at least part of the muted-binding interface. Functional, histological and immunohistochemical analyses failed to detect any sign of muscle pathology in BLOC-1-deficient, homozygous pallid mice. Taken together, these results suggest that dysbindin assembled into BLOC-1 is not a physiological binding partner of the dystrobrevins, likely due to engagement of its dystrobrevin-binding region in interactions with other subunits.
SCZ Keywordsschizophrenia, schizophrenic
3Schizophr. Res. 2008 Dec 106: 218-28
PMID18774265
TitleDysbindin deficiency in sandy mice causes reduction of snapin and displays behaviors related to schizophrenia.
Abstractschizophrenia (SCZ) is a complex trait with a high heritability. The DTNBP1 gene (encoding dysbindin) is one of the leading susceptible genes of SCZ. This risk gene has been reported to be associated with clinical symptoms such as negative symptoms and cognitive deficits. Although reduction of dysbindin expression in schizophrenic brain tissue has been reported, how this contributes to its symptomatology remains uncertain. The sandy (sdy) mouse, which harbors a spontaneously occurring deletion in the Dtnbp1 gene and expresses no dysbindin protein, provides a unique tool to study the role of dysbindin in SCZ. Our recent findings reveal that the sdy mice exhibit specific defects of neurosecretion and synaptic morphology in hippocampal neurons. We here further described that sdy manifested schizophrenia-like behaviors such as social withdrawal and cognitive deficits. In sdy hippocampus, the steady-state level of SNAPIN (a SNAP25-binding protein and a synaptic priming regulator) was reduced due to loss of dysbindin. We further characterized that a 30-residue peptide in dysbindin (90-119 amino acids) mediated the interaction with SNAPIN. Our results suggest that the destabilization of SNAPIN in sdy mice may lead to abnormal neurotransmission and therefore abnormal behaviors. This further defines the sdy mutant as a potential model in schizophrenia research.
SCZ Keywordsschizophrenia, schizophrenic
4Schizophr. Res. 2008 Dec 106: 218-28
PMID18774265
TitleDysbindin deficiency in sandy mice causes reduction of snapin and displays behaviors related to schizophrenia.
Abstractschizophrenia (SCZ) is a complex trait with a high heritability. The DTNBP1 gene (encoding dysbindin) is one of the leading susceptible genes of SCZ. This risk gene has been reported to be associated with clinical symptoms such as negative symptoms and cognitive deficits. Although reduction of dysbindin expression in schizophrenic brain tissue has been reported, how this contributes to its symptomatology remains uncertain. The sandy (sdy) mouse, which harbors a spontaneously occurring deletion in the Dtnbp1 gene and expresses no dysbindin protein, provides a unique tool to study the role of dysbindin in SCZ. Our recent findings reveal that the sdy mice exhibit specific defects of neurosecretion and synaptic morphology in hippocampal neurons. We here further described that sdy manifested schizophrenia-like behaviors such as social withdrawal and cognitive deficits. In sdy hippocampus, the steady-state level of SNAPIN (a SNAP25-binding protein and a synaptic priming regulator) was reduced due to loss of dysbindin. We further characterized that a 30-residue peptide in dysbindin (90-119 amino acids) mediated the interaction with SNAPIN. Our results suggest that the destabilization of SNAPIN in sdy mice may lead to abnormal neurotransmission and therefore abnormal behaviors. This further defines the sdy mutant as a potential model in schizophrenia research.
SCZ Keywordsschizophrenia, schizophrenic
5J. Neurosci. 2012 Jun 32: 8716-24
PMID22723711
TitleSnapin is critical for presynaptic homeostatic plasticity.
AbstractThe molecular mechanisms underlying the homeostatic modulation of presynaptic neurotransmitter release are largely unknown. We have previously used an electrophysiology-based forward genetic screen to assess the function of >400 neuronally expressed genes for a role in the homeostatic control of synaptic transmission at the neuromuscular junction of Drosophila melanogaster. This screen identified a critical function for dysbindin, a gene linked to schizophrenia in humans (Dickman and Davis, 2009). Biochemical studies in other systems have shown that SNAPIN interacts with Dysbindin, prompting us to test whether SNAPIN might be involved in the mechanisms of synaptic homeostasis. Here, we demonstrate that loss of SNAPIN blocks the homeostatic modulation of presynaptic vesicle release following inhibition of postsynaptic glutamate receptors. This is true for both the rapid induction of synaptic homeostasis induced by pharmacological inhibition of postsynaptic glutamate receptors, and the long-term expression of synaptic homeostasis induced by the genetic deletion of the muscle-specific GluRIIA glutamate receptor subunit. Loss of SNAPIN does not alter baseline synaptic transmission, synapse morphology, synapse growth, or the number or density of active zones, indicating that the block of synaptic homeostasis is not a secondary consequence of impaired synapse development. Additional genetic evidence suggests that SNAPIN functions in concert with dysbindin to modulate vesicle release and possibly homeostatic plasticity. Finally, we provide genetic evidence that the interaction of SNAPIN with SNAP25, a component of the SNARE complex, is also involved in synaptic homeostasis.
SCZ Keywordsschizophrenia, schizophrenic
6J. Proteome Res. 2014 Nov 13: 4567-80
PMID25198678
TitleDysbindin-associated proteome in the p2 synaptosome fraction of mouse brain.
AbstractThe gene DTNBP1 encodes the protein dysbindin and is among the most promising and highly investigated schizophrenia-risk genes. Accumulating evidence suggests that dysbindin plays an important role in the regulation of neuroplasticity. Dysbindin was reported to be a stable component of BLOC-1 complex in the cytosol. However, little is known about the endogenous dysbindin-containing complex in the brain synaptosome. In this study, we investigated the associated proteome of dysbindin in the P2 synaptosome fraction of mouse brain. Our data suggest that dysbindin has three isoforms associating with different complexes in the P2 fraction of mouse brain. To facilitate immunopurification, BAC transgenic mice expressing a tagged dysbindin were generated, and 47 putative dysbindin-associated proteins, including all components of BLOC-1, were identified by mass spectrometry in the dysbindin-containing complex purified from P2. The interactions of several selected candidates, including WDR11, FAM91A1, SNAPIN, muted, pallidin, and two proteasome subunits, PSMD9 and PSMA4, were verified by coimmunoprecipitation. The specific proteasomal activity is significantly reduced in the P2 fraction of the brains of the dysbindin-null mutant (sandy) mice. Our data suggest that dysbindin is functionally interrelated to the ubiquitin-proteasome system and offer a molecular repertoire for future study of dysbindin functional networks in brain.
SCZ Keywordsschizophrenia, schizophrenic