1PLoS ONE 2011 -1 6: e29499
PMID22242126
TitleAblation of Mrds1/Ofcc1 induces hyper-?-glutamyl transpeptidasemia without abnormal head development and schizophrenia-relevant behaviors in mice.
AbstractMutations in the Opo gene result in eye malformation in medaka fish. The human ortholog of this gene, MRDS1/OFCC1, is a potentially causal gene for orofacial cleft, as well as a susceptibility gene for schizophrenia, a devastating mental illness. Based on this evidence, we hypothesized that this gene could perform crucial functions in the development of head and brain structures in vertebrates. To test this hypothesis, we created Mrds1/OFCC1-null mice. Mice were examined thoroughly using an abnormality screening system referred to as "the Japan Mouse Clinic". No malformations of the head structure, eye or other parts of the body were apparent in these knockout mice. However, the mutant mice showed a marked increase in serum ?-glutamyl transpeptidase (GGT), a marker for liver damage, but no abnormalities in other liver-related measurements. We also performed a family-based association study on the gene in schizophrenia samples of Japanese origin. We found five single nucleotide polymorphisms (SNPs) located across the gene that showed significant transmission distortion, supporting a prior report of association in a Caucasian cohort. However, the knockout mice showed no behavioral phenotypes relevant to schizophrenia. In conclusion, disruption of the Mrds1/OFCC1 gene elicits asymptomatic hyper-?-glutamyl-transpeptidasemia in mice. However, there were no phenotypes to support a role for the gene in the development of eye and craniofacial structures in vertebrates. These results prompt further examination of the gene, including its putative contribution to hyper-?-glutamyl transpeptidasemia and schizophrenia.
SCZ Keywordsschizophrenia
2Mol Autism 2014 -1 5: 1
PMID24410847
TitleExome sequencing of extended families with autism reveals genes shared across neurodevelopmental and neuropsychiatric disorders.
AbstractAutism spectrum disorders (ASDs) comprise a range of neurodevelopmental conditions of varying severity, characterized by marked qualitative difficulties in social relatedness, communication, and behavior. Despite overwhelming evidence of high heritability, results from genetic studies to date show that ASD etiology is extremely heterogeneous and only a fraction of autism genes have been discovered.
To help unravel this genetic complexity, we performed whole exome sequencing on 100 ASD individuals from 40 families with multiple distantly related affected individuals. All families contained a minimum of one pair of ASD cousins. Each individual was captured with the Agilent SureSelect Human All Exon kit, sequenced on the Illumina Hiseq 2000, and the resulting data processed and annotated with Burrows-Wheeler Aligner (BWA), Genome Analysis Toolkit (GATK), and SeattleSeq. Genotyping information on each family was utilized in order to determine genomic regions that were identical by descent (IBD). Variants identified by exome sequencing which occurred in IBD regions and present in all affected individuals within each family were then evaluated to determine which may potentially be disease related. Nucleotide alterations that were novel and rare (minor allele frequency, MAF, less than 0.05) and predicted to be detrimental, either by altering amino acids or splicing patterns, were prioritized.
We identified numerous potentially damaging, ASD associated risk variants in genes previously unrelated to autism. A subset of these genes has been implicated in other neurobehavioral disorders including depression (SLIT3), epilepsy (CLCN2, PRICKLE1), intellectual disability (AP4M1), schizophrenia (WDR60), and Tourette syndrome (OFCC1). Additional alterations were found in previously reported autism candidate genes, including three genes with alterations in multiple families (CEP290, CSMD1, FAT1, and STXBP5). Compiling a list of ASD candidate genes from the literature, we determined that variants occurred in ASD candidate genes 1.65 times more frequently than in random genes captured by exome sequencing (P?=?8.55 × 10-5).
By studying these unique pedigrees, we have identified novel DNA variations related to ASD, demonstrated that exome sequencing in extended families is a powerful tool for ASD candidate gene discovery, and provided further evidence of an underlying genetic component to a wide range of neurodevelopmental and neuropsychiatric diseases.
SCZ Keywordsschizophrenia