1PLoS ONE 2012 -1 7: e46604
PMID23029555
TitleNpas4: a neuronal transcription factor with a key role in social and cognitive functions relevant to developmental disorders.
AbstractNPAS4 is a transcription factor, which is highly expressed in the brain and regulates the formation and maintenance of inhibitory synapses in response to excitatory synaptic activity. A deregulation of the inhibitory-excitatory balance has been associated with a variety of human developmental disorders such as schizophrenia and autism. However, not much is known about the role played by inhibitory synapses and inhibitory pathways in the development of nervous system disorders. We hypothesized that alterations in the inhibitory pathways induced by the absence of NPAS4 play a major role in the expression of the symptoms observed in psychiatric disorders. To test this hypothesis we tested mice lacking the transcription factor (NPAS4 knock-out mice (NPAS4-KO)) in a battery of behavioral assays focusing on general activity, social behaviors, and cognitive functions. NPAS4-KO mice are hyperactive in a novel environment, spend less time exploring an unfamiliar ovariectomized female, spend more time avoiding an unfamiliar male during a first encounter, show higher social dominance than their WT littermates, and display pre-pulse inhibition, working memory, long-term memory, and cognitive flexibility deficits. These behavioral deficits may replicate schizophrenia-related symptomatology such as social anxiety, hyperactivity, and cognitive and sensorimotor gating deficits. Immunohistochemistry analyses revealed that NPAS4 expression is induced in the hippocampus after a social encounter and that NPAS4 regulates the expression of c-Fos in the CA1 and CA3 regions of the hippocampus after a cognitive task. Our results suggest that NPAS4 may play a major role in the regulation of cognitive and social functions in the brain with possible implications for developmental disorders such as schizophrenia and autism.
SCZ Keywordsschizophrenia, schizophrenic
2PLoS ONE 2014 -1 9: e85768
PMID24465693
TitleHuman variants in the neuronal basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) transcription factor complex NPAS4/ARNT2 disrupt function.
AbstractNeuronal Per-Arnt-Sim homology (PAS) Factor 4 (NPAS4) is a neuronal activity-dependent transcription factor which heterodimerises with ARNT2 to regulate genes involved in inhibitory synapse formation. NPAS4 functions to maintain excitatory/inhibitory balance in neurons, while mouse models have shown it to play roles in memory formation, social interaction and neurodegeneration. NPAS4 has therefore been implicated in a number of neuropsychiatric or neurodegenerative diseases which are underpinned by defects in excitatory/inhibitory balance. Here we have explored a broad set of non-synonymous human variants in NPAS4 and ARNT2 for disruption of NPAS4 function. We found two variants in NPAS4 (F147S and E257K) and two variants in ARNT2 (R46W and R107H) which significantly reduced transcriptional activity of the heterodimer on a luciferase reporter gene. Furthermore, we found that NPAS4.F147S was unable to activate expression of the NPAS4 target gene BDNF due to reduced dimerisation with ARNT2. Homology modelling predicts F147 in NPAS4 to lie at the dimer interface, where it appears to directly contribute to protein/protein interaction. We also found that reduced transcriptional activation by ARNT2 R46W was due to disruption of nuclear localisation. These results provide insight into the mechanisms of NPAS4/ARNT dimerisation and transcriptional activation and have potential implications for cognitive phenotypic variation and diseases such as autism, schizophrenia and dementia.
SCZ Keywordsschizophrenia, schizophrenic
3Pharmacol. Res. 2014 Feb 80: 1-8
PMID24309096
TitleRepeated aripiprazole treatment regulates Bdnf, Arc and Npas4 expression under basal condition as well as after an acute swim stress in the rat brain.
AbstractDespite the rapid control of schizophrenic symptoms is due to the ability of antipsychotic drugs (APDs) to block D2 receptors in the mesolimbic pathway, it is now well-established that the therapeutic effects rely on adaptive mechanisms set in motion by their long-term administration. Such neuroplastic mechanisms depend on the pharmacological profile of the drug employed, with marked differences existing between first and second generation APDs. On these bases, the major accomplishment of this work was to investigate neuroadaptive changes set in motion by repeated treatment with aripiprazole, a novel APD that is unique for being a partial agonist at dopamine D2 receptors. Moreover, given that stress plays a critical role in the exacerbation of disease symptoms, we also investigated whether aripiprazole could influence the dynamic response of the brain to an acute challenge. We found that repeated aripiprazole treatment in rats regulates the expression of different markers of neuroplasticity such as Bdnf, Arc and NPAS4 in a brain-region specific fashion; more importantly, the expression of these molecules was significantly up-regulated by an acute swim stress only in aripiprazole-treated animals, which is suggestive of increased ability to cope with the adverse event. We indeed found an overall facilitation of Bdnf expression, an effect that is mainly evident in the prefrontal cortex on the pool of transcripts undergoing dendritic localization. Overall, our results provide novel information regarding the mechanisms through which aripiprazole may regulate brain function and could contribute to improve neuroplastic defects that are associated with schizophrenia symptomatology.
SCZ Keywordsschizophrenia, schizophrenic
4Pharmacol. Res. 2014 Feb 80: 1-8
PMID24309096
TitleRepeated aripiprazole treatment regulates Bdnf, Arc and Npas4 expression under basal condition as well as after an acute swim stress in the rat brain.
AbstractDespite the rapid control of schizophrenic symptoms is due to the ability of antipsychotic drugs (APDs) to block D2 receptors in the mesolimbic pathway, it is now well-established that the therapeutic effects rely on adaptive mechanisms set in motion by their long-term administration. Such neuroplastic mechanisms depend on the pharmacological profile of the drug employed, with marked differences existing between first and second generation APDs. On these bases, the major accomplishment of this work was to investigate neuroadaptive changes set in motion by repeated treatment with aripiprazole, a novel APD that is unique for being a partial agonist at dopamine D2 receptors. Moreover, given that stress plays a critical role in the exacerbation of disease symptoms, we also investigated whether aripiprazole could influence the dynamic response of the brain to an acute challenge. We found that repeated aripiprazole treatment in rats regulates the expression of different markers of neuroplasticity such as Bdnf, Arc and NPAS4 in a brain-region specific fashion; more importantly, the expression of these molecules was significantly up-regulated by an acute swim stress only in aripiprazole-treated animals, which is suggestive of increased ability to cope with the adverse event. We indeed found an overall facilitation of Bdnf expression, an effect that is mainly evident in the prefrontal cortex on the pool of transcripts undergoing dendritic localization. Overall, our results provide novel information regarding the mechanisms through which aripiprazole may regulate brain function and could contribute to improve neuroplastic defects that are associated with schizophrenia symptomatology.
SCZ Keywordsschizophrenia, schizophrenic
5Neurobiol. Dis. 2015 May 77: 228-37
PMID25771167
TitleThe BDNF Val66Met variant affects gene expression through miR-146b.
AbstractVariation in gene expression is an important mechanism underlying susceptibility to complex disease and traits. Single nucleotide polymorphisms (SNPs) account for a substantial portion of the total detected genetic variation in gene expression but how exactly variants acting in trans modulate gene expression and disease susceptibility remains largely unknown. The BDNF Val66Met SNP has been associated with a number of psychiatric disorders such as depression, anxiety disorders, schizophrenia and related traits. Using global microRNA expression profiling in hippocampus of humanized BDNF Val66Met knock-in mice we showed that this variant results in dysregulation of at least one microRNA, which in turn affects downstream target genes. Specifically, we show that reduced levels of miR-146b (mir146b), lead to increased Per1 and NPAS4 mRNA levels and increased Irak1 protein levels in vitro and are associated with similar changes in the hippocampus of hBDNF(Met/Met) mice. Our findings highlight trans effects of common variants on microRNA-mediated gene expression as an integral part of the genetic architecture of complex disorders and traits.
SCZ Keywordsschizophrenia, schizophrenic