1Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008 Sep 147B: 707-11
PMID18163405
TitleDo mood symptoms subdivide the schizophrenia phenotype? Association of the GMP6A gene with a depression subgroup.
AbstractGenetic studies of clinically defined subgroups of schizophrenia patients may reduce the phenotypic heterogeneity of schizophrenia and thus facilitate the identification of genes that confer risk to this disorder. Several latent class analyses have provided subgroups of psychotic disorders that show considerable consistency over these studies. The presence or absence of mood symptoms was found to contribute most to the delineations of these subgroups. In this study we used six previously published subtypes of psychosis derived from latent class analysis of a large sample of psychosis patients. In 280 schizophrenia patients and 525 healthy controls we investigated the associations of these subgroups with myelin related genes. After bonferroni correction we found an association of the glycoprotein M6A gene (GPM6A) with the subgroup of schizophrenia patients with high levels of depression (P-corrected = 0.006). Borderline association of the microtubulin associated protein tau (MAPT) with a primarily non-affective group of schizophrenia patients (P-corrected = 0.052) was also observed. GPM6A modulates the influence of stress on the hippocampus in animals. Thus our findings could suggest that GMP6A plays a role in the stress-induced hippocampal alterations that are found in psychiatric disorders in general and schizophrenia in particular. Overall, these finding suggests that investigating subgroups of schizophrenia based symptoms profile and particularly mood symptoms can facilitate genetic studies of schizophrenia.
SCZ Keywordsschizophrenia
2J. Neurosci. Res. 2015 Feb 93: 215-29
PMID25242528
TitleTyrosine 251 at the C-terminus of neuronal glycoprotein M6a is critical for neurite outgrowth.
AbstractNeuronal glycoprotein M6a is involved in neuronal plasticity, promoting neurite and filopodia outgrowth and, likely, synaptogenesis. Polymorphisms in the human M6a gene GPM6A have recently been associated with mental illnesses such as schizophrenia, bipolar disorders, and claustrophobia. Nevertheless, the molecular bases underlying these observations remain unknown. We have previously documented that, to induce filopodia formation, M6a depends on the association of membrane lipid microdomains and the activation of Src and mitogen-activated protein kinase kinases. Here, in silico analysis of the phosphorylation of tyrosine 251 (Y251) at the C-terminus of M6a showed that it could be a target of Src kinases. We examined whether phosphorylation of M6a at Y251 affects neurite and filopodia outgrowth and the targets involved in its signal propagation. This work provides evidence that the Src kinase family and the phosphatidylinositide 3-kinase (PI3K), but not Ras, participate in M6a signal cascade leading to neurite/filopodia outgrowth in hippocampal neurons and murine neuroblastoma N2a cells. Phosphorylation of M6a at Y251 is essential only for neurite outgrowth by the PI3K/AKT-mediated pathway and, moreover, rescues the inhibition caused by selective Src inhibitor and external M6a monoclonal antibody treatment. Thus, we suggest that phosphorylation of M6a at Y251 is critical for a specific stage of neuronal development and triggers redundant signaling pathways leading to neurite extension.
SCZ Keywordsschizophrenia