1Psychiatr. Genet. 2001 Sep 11: 139-44
PMID11702055
TitleAssociation study of polymorphisms in the GluR5 kainate receptor gene (GRIK1) with schizophrenia.
AbstractThe glutamatergic dysfunction hypothesis suggests genes involved in glutamatergic transmission as candidates for schizophrenia susceptibility genes. We screened single nucleotide polymorphisms (SNPs) in the entire coding sequence of the GluR5 kainate receptor gene, GRIK1, by polymerase chain reaction-single strand conformation polymorphism and direct sequencing. We identified six SNPs including three known ones, 522A/C (174T, synonymous), 1173C/T (391D, synonymous), and 2705C/T (902L/S), as well as three novel ones, 995C/T (332A/V), 2400C/T (800L, synonymous), and 2585A/G (862R/Q). We genotyped Japanese samples of schizophrenia (n = 193-203) and healthy controls (n = 199-215) for three SNPs those were commonly observed in our samples, 522A/C, 1173C/T, and 2705C/T. We observed no significant associations of the SNPs and their haplotypes with schizophrenia. Therefore, we conclude that GRIK1 does not play a major role in schizophrenia pathogenesis in the Japanese population.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
2Ann. N. Y. Acad. Sci. 2003 Nov 1003: 22-35
PMID14684433
TitleGenomics and variation of ionotropic glutamate receptors.
AbstractSequencing of the human, mouse, and rat genomes has enabled a comprehensive informatics approach to gene families. This approach is informative for identification of new members of gene families, for cross-species sequence conservation related to functional conservation, for within-species diversity related to functional variation, and for historical effects of selection. This genome informatics approach also focuses our attention on genes whose genomic locations coincide with linkages to phenotypes. We are identifying ionotropic glutamate receptor (IGR) sequence variation by resequencing technologies, including denaturing high-performance liquid chromoatography (dHPLC), for screening and direct sequencing, and by information mining of public (e.g., dbSNP and ENSEMBL) and private (i.e., Celera Discovery System) sequence databases. Each of the 16 known IGRs is represented in these databases, their positions on a canonical physical map (for example, the Celera map) are established, and comparison to mouse and rat sequences has been performed, revealing substantial conservation of these genes, which are located on different chromosomes but found within syntenic groups of genes. A collection of 38 missense variants were identified by the informatics and resequencing approaches in several of these receptor genes, including GRIN2B, GRIN3B, GRIA2, GRIA3, and GRIK1. This represents only a fraction of the sequence variation across these genes, but, in fact, these may constitute a large fraction of the common polymorphisms at these genes, and these polymorphisms are a starting point for understanding the role of these receptors in neurogenetic variation. Genetically influenced human neurobehavioral phenotypes that are likely to be linked to IGR genetic variants include addictions, anxiety/dysphoria disorders, post-brain injury behavioral disorders, schizophrenia, epilepsy, pain perception, learning, and cognition. Thus, the effects of glutamate receptor variation may be protean, and the task of relating variation to behavior difficult. However, functional variants of (1) catechol-O-methyltransferase, (2) serotonin transporter, and (3) brain-derived neurotrophic factor have recently been linked both to behavioral differences and to intermediate phenotypes, suggesting a pathway by which functional variation at IGRs can be tied to an etiologically complex phenotype.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
3J Psychiatry Neurosci 2009 Nov 34: 450-8
PMID19949721
TitleExpression profiles of schizophrenia susceptibility genes during human prefrontal cortical development.
AbstractDisruption in normal development of the human prefrontal cortex (PFC) may lead to cognitive dysfunction that manifests in individuals with schizophrenia. We sought to identify genes associated with age that are implicated in schizophrenia.
We generated genome-wide expression profiles for the PFCs of humans ranging in age from 1 month to 49 years using the Affymetrix HG-U133 plus 2.0 microarrays (54 675 transcripts). Based on the criteria of significance (false discovery rate [FDR]-adjusted q < 0.001 and r(2) > 0.6), we identified the genes associated with age in the PFC. We then performed functional annotation analyses of age-associated genes using the Gene Ontology and the Genetic Association Database (GAD).
We found robust age-dependent changes in gene expression in the PFCs of humans (2281 transcripts). The GAD analysis revealed that schizophrenia was an over-represented disease class, with 42 susceptibility genes included (p < 0.001, fold enrichment = 1.66, FDR = 1.5%). Among the 42 genes, glutamate receptor genes (GRIA1, GRIK1, GRIK2, GRIN2D, GRIP1, GRM5, GRM7 and SLC1A6) were consistently downregulated across age. We confirmed microarray gene expression changes by the quantitative polymerase chain reaction experiment.
Although numerous genes undergo robust changes in expression during the PFC development, some of the changes may be confounded by known and unknown factors that are intrinsic to the postmortem brain studies.
Multiple schizophrenia susceptibility genes undergo age-dependent expression changes in the human PFC, and any disruption in those genes during the critical period of development may predispose the individuals to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
4Pharmacogenet. Genomics 2011 Apr 21: 206-16
PMID20859245
TitleGlutamatergic gene variants impact the clinical profile of efficacy and side effects of haloperidol.
AbstractThe glutamatergic system may be relevant to the pathophysiology of psychosis and to the effects of antipsychotic treatments.
We investigated a set of 62 SNPs located in genes coding for subunits of glutamatergic receptors (GAD1, GRIA1, GRIA3, GRIA4, GRID2, GRIK1, GRIK2, GRIK3, GRIK4, GRIN2B, GRM1 and GRM4), and the transporter of glycine (SLC6A5), as modulators of the effects of haloperidol.
We studied a sample of 101 acutely ill psychotic patients. We then validated our result in two independent samples from Slovenia (n=71 and n=118) of schizophrenic patients treated with antipsychotics. We both investigated the antipsychotic effect (Positive and Negative Syndrome Scale) and motor side effect (Extrapyramidal Symptom Rating Scale) at baseline and days 3, 7, 14, 21 and 28. SLC6A5 variant (rs2298826) was found to be associated with a rapid rise of motor side effects at the beginning of the treatment (repeated measures of analysis of variance, P=0.0002), followed by a subsequent adaptation, probably dependent on haloperidol doses down titration. A specific effect was noted for dyskinetic symptoms. Haplotype analysis strengthened the relevance of SLC6A5: the C-A-C haplotype (rs1443548, rs883377, rs1945771) was found to be associated with higher Extrapyramidal symptom rating scale scores (overall P=0.01, haplotype P=0.000001). We successfully replicated this finding in the two independent samples from Slovenia.
This result further stresses the relevance of the glutamatergic system in modulating the effects of haloperidol treatment, especially with regards to motor side effects.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
5Hum Psychopharmacol 2012 Jul 27: 345-51
PMID22730074
TitleAssociation study of GRIK1 gene polymorphisms in schizophrenia: case-control and family-based studies.
AbstractGlutamatergic function is one of the major hypotheses for schizophrenia. Within the glutamate system, the glutamate receptor ionotropic kainate-1 (GRIK1) gene is thought to be particularly involved in schizophrenia because of the reported reduction of GRIK1 in the dorsolateral prefrontal cortex of patients.
We examined single-nucleotide polymorphisms (SNPs) in the GRIK1 gene for possible association with schizophrenia.
We analyzed eight SNPs across the GRIK1 gene in 202 case-control pairs and 108 small nuclear families.
For the case-control study, we found nominal significant associations in the analysis of rs469472 (p = 0.028) and its haplotypes. In the family-based study, nominal significant association was also observed for rs469472 (p = 0.046), as well as rs455892 (p = 0.024). The marker rs469472 was associated with schizophrenia when we combined the case-control and family samples (p = 0.027). The association findings did not survive correction for multiple testing.
Because we observed similar association findings with marker rs469472 in two independent samples, further analyses in larger samples are warranted.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
6Anal. Biochem. 2013 Jun 437: 164-71
PMID23481915
TitleDesign and interpretation of microRNA-reporter gene activity.
AbstractMicroRNAs (miRNAs) are small noncoding RNA molecules that act as sequence specificity guides to direct post-transcriptional gene silencing. In doing so, miRNAs regulate many critical developmental processes, including cellular proliferation, differentiation, migration, and apoptosis, as well as more specialized biological functions such as dendritic spine development and synaptogenesis. Interactions between miRNAs and their miRNA recognition elements occur via partial complementarity, rendering tremendous redundancy in targeting such that miRNAs are predicted to regulate 60% of the genome, with each miRNA estimated to regulate more than 200 genes. Because these predictions are prone to false positives and false negatives, there is an ever present need to provide material support to these assertions to firmly establish the biological function of specific miRNAs in both normal and pathophysiological contexts. Using schizophrenia-associated miR-181b as an example, we present detailed guidelines and novel insights for the rapid establishment of a streamlined miRNA-reporter gene assay and explore various design concepts for miRNA-reporter gene applications, including bidirectional miRNA modulation. In exemplifying this approach, we report seven novel miR-181b target sites for five schizophrenia candidate genes (DISC1, BDNF, ENKUR, GRIA1, and GRIK1) and dissect a number of vital concepts regarding future developments for miRNA-reporter gene assays and the interpretation of their results.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
7Am. J. Med. Genet. A 2014 Feb 164A: 456-60
PMID24449200
Title1p34.3 deletion involving GRIK3: Further clinical implication of GRIK family glutamate receptors in the pathogenesis of developmental delay.
AbstractA growing body of evidence suggests an association between microdeletion/microduplication and schizophrenia/intellectual disability. Abnormal neurogenesis and neurotransmission have been implicated in the pathogenesis of these neuropsychiatric and neurodevelopmental disorders. The kainate/AMPA-type ionotropic glutamate receptor (GRIK?=?glutamate receptor, ionotropic, kainate) plays a critical role in synaptic potentiation, which is an essential process for learning and memory. Among the five known GRIK family members, haploinsufficiency of GRIK1, GRIK2, and GRIK4 are known to cause developmental delay, whereas the roles of GRIK3 and GRIK5 remain unknown. Herein, we report on a girl who presented with a severe developmental delay predominantly affecting her language and fine motor skills. She had a 2.6-Mb microdeletion in 1p34.3 involving GRIK3, which encodes a principal subunit of the kainate-type ionotropic glutamate receptor. Given its strong expression pattern in the central nervous system and the biological function of GRIK3 in presynaptic neurotransmission, the haploinsufficiency of GRIK3 is likely to be responsible for the severe developmental delay in the proposita. A review of genetic alterations and the phenotypic effects of all the GRIK family members support this hypothesis. The current observation of a microdeletion involving GRIK3, a kainate-type ionotropic glutamate receptor subunit, and the neurodevelopmental manifestation in the absence of major dysmorphism provides further clinical implication of the possible role of GRIK family glutamate receptors in the pathogenesis of developmental delay.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
8Schizophr. Res. 2015 Sep 167: 73-83
PMID25749020
TitleBuilding models for postmortem abnormalities in hippocampus of schizophrenics.
AbstractPostmortem studies have suggested that there is abnormal GABAergic activity in the hippocampus in schizophrenia (SZ). In micro-dissected human hippocampal slices, a loss of interneurons and a compensatory upregulation of GABAA receptor binding activity on interneurons, but not PNs, has suggested that disinhibitory GABA-to-GABA connections are abnormal in stratum oriens (SO) of CA3/2, but not CA1, in schizophrenia. Abnormal expression changes in the expression of kainate receptor (KAR) subunits 5, 6 and 7, as well as an inwardly-rectifying hyperpolarization-activated cationic channel (Ih3; HCN3) may play important roles in regulating GABA cell activity at the SO CA3/2 locus. The exclusive neurons at this site are GABAergic interneurons; these cells also receive direct projections from the basolateral amygdala (BLA). When the BLA is stimulated by stereotaxic infusion of picrotoxin in rats, KARs influence axodendritic and presynaptic inhibitory mechanisms that regulate both inhibitory and disinhibitory interneurons in the SO-CA3/2 locus. The rat model described here was specifically developed to extend our understanding of these and other postmortem findings and has suggested that GABAergic abnormalities and possible disturbances in oscillatory rhythms may be related to a dysfunction of disinhibitory interneurons at the SO-CA3/2 site of schizophrenics.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
9Schizophr. Res. 2015 Sep 167: 73-83
PMID25749020
TitleBuilding models for postmortem abnormalities in hippocampus of schizophrenics.
AbstractPostmortem studies have suggested that there is abnormal GABAergic activity in the hippocampus in schizophrenia (SZ). In micro-dissected human hippocampal slices, a loss of interneurons and a compensatory upregulation of GABAA receptor binding activity on interneurons, but not PNs, has suggested that disinhibitory GABA-to-GABA connections are abnormal in stratum oriens (SO) of CA3/2, but not CA1, in schizophrenia. Abnormal expression changes in the expression of kainate receptor (KAR) subunits 5, 6 and 7, as well as an inwardly-rectifying hyperpolarization-activated cationic channel (Ih3; HCN3) may play important roles in regulating GABA cell activity at the SO CA3/2 locus. The exclusive neurons at this site are GABAergic interneurons; these cells also receive direct projections from the basolateral amygdala (BLA). When the BLA is stimulated by stereotaxic infusion of picrotoxin in rats, KARs influence axodendritic and presynaptic inhibitory mechanisms that regulate both inhibitory and disinhibitory interneurons in the SO-CA3/2 locus. The rat model described here was specifically developed to extend our understanding of these and other postmortem findings and has suggested that GABAergic abnormalities and possible disturbances in oscillatory rhythms may be related to a dysfunction of disinhibitory interneurons at the SO-CA3/2 site of schizophrenics.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics