1Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005 Apr 134B: 90-2
PMID15719395
TitleNo association of GSK3beta gene (GSK3B) with Japanese schizophrenia.
AbstractSeveral lines of evidence indicate that glycogen synthase kinase-3beta (GSK3Beta) is one of the candidates for schizophrenia-susceptibility factor. However, it has not been reported the association analysis between GSK3Beta gene (GSK3B) and Japanese schizophrenia based on linkage disequilibrium (LD). We provide an association analysis using relatively large samples (381 schizophrenia, and 352 controls) after determination of "tag single nucleotide polymorphisms (SNPs)." In this LD mapping, we selected and genotyped for eight polymorphisms (seven SNPs and one diallelic (CAA)(n) repeat), which covered the entire region of GSK3B, and determined two "tag SNPs." In the following association analysis using these two "tag SNPs," we could not find association with Japanese schizophrenia. Furthermore, we also include subgroup analysis considering age-at-onset and subtypes, neither could we find associations. Because our samples provided quite high power, these results indicate that GSK3B may not play a major role in Japanese schizophrenia.
SCZ Keywordsschizophrenia
2Genes Brain Behav. 2007 Feb 6: 107-12
PMID17233643
TitlePossible association of beta-arrestin 2 gene with methamphetamine use disorder, but not schizophrenia.
AbstractRecent investigations suggest that the AKT/glycogen synthase kinase 3 (GSK3) signaling cascade may be associated with the pathophysiology of schizophrenia and methamphetamine (METH) use disorder. One important molecule related to this cascade is beta-arrestin 2 (ARRB2). We therefore conducted a genetic case-control association analysis of the gene for ARRB2 with schizophrenia and METH use disorder in a Japanese population (547 people with schizophrenia, 177 with METH use disorder and 546 controls). A possible association of 'tag single nucleotide polymorphisms (SNPs)' was found in METH use disorder (rs1045280: P(genotype) = 0.0118, P(allele) = 0.00351; rs2036657: P(allele) = 0.0431; rs4790694: P(genotype) = 0.0167, P(allele) = 0.0202), but no association was found with schizophrenia. We also evaluated the gene-gene interactions among ARRB2, AKT1, and GSK3B, which we previously reported for each of these diseases. However, no interaction was seen in our samples. This is the first association analysis of ARRB2, and our results indicate that ARRB2 may play a role in the pathophysiology of METH use disorder.
SCZ Keywordsschizophrenia
3Psychopharmacology (Berl.) 2010 Feb 208: 333-4; author reply 335-6
PMID19936977
TitleGSK3B and schizophrenia: a case not closed.
Abstract-1
SCZ Keywordsschizophrenia
4J. Neurosci. 2011 Apr 31: 5512-25
PMID21471388
TitleDopamine D2 receptor activity modulates Akt signaling and alters GABAergic neuron development and motor behavior in zebrafish larvae.
AbstractAn imbalance in dopamine-mediated neurotransmission is a hallmark physiological feature of neuropsychiatric disorders, such as schizophrenia. Recent evidence demonstrates that dopamine D(2) receptors, which are the main target of antipsychotics, modulate the activity of the protein kinase Akt, which is known to be downregulated in the brain of patients with schizophrenia. Akt has an important role in the regulation of cellular processes that are critical for neurodevelopment, including gene transcription, cell proliferation, and neuronal migration. Thus, it is possible that during brain development, altered Akt-dependent dopamine signaling itself may lead to defects in neural circuit formation. Here, we used a zebrafish model to assess the direct impact of altered dopamine signaling on brain development and larval motor behavior. We demonstrate that D(2) receptor activation acutely suppresses Akt activity by decreasing the level of pAkt(Thr308) in the larval zebrafish brain. This D(2)-dependent reduction in Akt activity negatively regulates larval movement and is distinct from a D(1)-dependent pathway with opposing affects on motor behavior. In addition, we show that D(2)-dependent suppression of Akt activity causes a late onset change in GSK3B activity, a known downstream target of Akt signaling. Finally, altered D(2) receptor signaling, or direct inhibition of Akt activity, causes a significant decrease in the size of the GABAergic neuron population throughout most of the brain. Our observations suggest that D(2) receptor signaling suppresses Akt-GSK3B activity, which regulates GABAergic neuron development and motor behavior.
SCZ Keywordsschizophrenia
5Transl Psychiatry 2011 -1 1: e25
PMID22832527
TitleGenetic regulation of Nrxn1 [corrected] expression: an integrative cross-species analysis of schizophrenia candidate genes.
AbstractNeurexin 1 (NRXN1) is a large presynaptic transmembrane protein that has complex and variable patterns of expression in the brain. Sequence variants in NRXN1 are associated with differences in cognition, and with schizophrenia and autism. The murine Nrxn1 gene is also highly polymorphic and is associated with significant variation in expression that is under strong genetic control. Here, we use co-expression analysis, high coverage genomic sequence, and expression quantitative trait locus (eQTL) mapping to study the regulation of this gene in the brain. We profiled a family of 72 isogenic progeny strains of a cross between C57BL/6J and DBA/2J (the BXD family) using exon arrays and massively parallel RNA sequencing. Expression of most Nrxn1 exons have high genetic correlation (r>0.6) because of the segregation of a common trans eQTL on chromosome (Chr) 8 and a common cis eQTL on Chr 17. These two loci are also linked to murine phenotypes relevant to schizophrenia and to a novel human schizophrenia candidate gene with high neuronal expression (Pleckstrin and Sec7 domain containing 3). In both human and mice, NRXN1 is co-expressed with numerous synaptic and cell signaling genes, and known schizophrenia candidates. Cross-species co-expression and protein interaction network analyses identified glycogen synthase kinase 3 beta (GSK3B) as one of the most consistent and conserved covariates of NRXN1. By using the Molecular Genetics of schizophrenia data set, we were able to test and confirm that markers in NRXN1 and GSK3B have epistatic interactions in human populations that can jointly modulate risk of schizophrenia.
SCZ Keywordsschizophrenia
6Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2012 Sep 367: 2460-74
PMID22826345
TitleSelective deletion of forebrain glycogen synthase kinase 3? reveals a central role in serotonin-sensitive anxiety and social behaviour.
AbstractSerotonin (5-HT) neurotransmission is thought to underlie mental illnesses, such as bipolar disorder, depression, autism and schizophrenia. Independent studies have indicated that 5-HT or drugs acting on 5-HT neurotransmission regulate the serine/threonine kinase glycogen synthase kinase 3? (GSK3?). Furthermore, GSK3? inhibition rescues behavioural abnormalities in 5-HT-deficient mice with a loss-of-function mutation equivalent to the human variant (R441H) of tryptophan hydroxylase 2. In an effort to define neuroanatomical correlates of GSK3? activity in the regulation of behaviour, we generated CamKIIcre-floxGSK3? mice in which the GSK3B gene is postnatally inactivated in forebrain pyramidal neurons. Behavioural characterization showed that suppression of GSK3? in these brain areas has anxiolytic and pro-social effects. However, while a global reduction of GSK2? expression reduced responsiveness to amphetamine and increased resilience to social defeat, these behavioural effects were not found in CamKIIcre-floxGSK3? mice. These findings demonstrate a dissociation of behavioural effects related to GSK3 inhibition, with forebrain GSK3? being involved in the regulation of anxiety and sociability while social preference, resilience and responsiveness to psychostimulants would involve a function of this kinase in subcortical areas such as the hippocampus and striatum.
SCZ Keywordsschizophrenia
7Front Genet 2013 -1 4: 58
PMID23637704
TitlePotential Impact of miR-137 and Its Targets in Schizophrenia.
AbstractThe significant impact of microRNAs (miRNAs) on disease pathology is becoming increasingly evident. These small non-coding RNAs have the ability to post-transcriptionally silence the expression of thousands of genes. Therefore, dysregulation of even a single miRNA could confer a large polygenic effect. schizophrenia is a genetically complex illness thought to involve multiple genes each contributing a small risk. Large genome-wide association studies identified miR-137, a miRNA shown to be involved in neuronal maturation, as one of the top risk genes. To assess the potential mechanism of impact of miR-137 in this disorder and identify its targets, we used a combination of literature searches, ingenuity pathway analysis (IPA), and freely accessible bioinformatics resources. Using TargetScan and the schizophrenia gene resource (SZGR) database, we found that in addition to CSMD1, C10orf26, CACNA1C, TCF4, and ZNF804A, five schizophrenia risk genes whose transcripts are also validated miR-137 targets, there are other schizophrenia-associated genes that may be targets of miR-137, including ERBB4, GABRA1, GRIN2A, GRM5, GSK3B, NRG2, and HTR2C. IPA analyses of all the potential targets identified several nervous system (NS) functions as the top canonical pathways including synaptic long-term potentiation, a process implicated in learning and memory mechanisms and recently shown to be altered in patients with schizophrenia. Among the subset of targets involved in NS development and function, the top scoring pathways were ephrin receptor signaling and axonal guidance, processes that are critical for proper circuitry formation and were shown to be disrupted in schizophrenia. These results suggest that miR-137 may indeed play a substantial role in the genetic etiology of schizophrenia by regulating networks involved in neural development and brain function.
SCZ Keywordsschizophrenia
8Psychiatry J 2013 -1 2013: 852930
PMID24236287
TitleNegative Symptoms of Psychosis Correlate with Gene Expression of the Wnt/?-Catenin Signaling Pathway in Peripheral Blood.
AbstractGenes in the Wnt (wingless)/ ? -catenin signaling pathway have been implicated in schizophrenia pathogenesis. No study has examined this pathway in the broader context of psychosis symptom severity. We investigated the association between symptom severity scores and expression of 25 Wnt pathway genes in blood from 19 psychotic patients. Significant correlations between negative symptom scores and deshivelled 2 (DVL2) (r adj = -0.70; P = 0.0008) and glycogen synthase kinase 3 beta (GSK3B) (r adj = 0.48; P = 0.039) were observed. No gene expression levels were associated with positive symptoms. Our findings suggest that the Wnt signaling pathway may harbor biomarkers for severity of negative but not positive symptoms.
SCZ Keywordsschizophrenia
9PLoS ONE 2013 -1 8: e71750
PMID23951236
TitleGSK3B and MAPT polymorphisms are associated with grey matter and intracranial volume in healthy individuals.
AbstractThe microtubule-associated protein tau gene (MAPT) codes for a protein that plays an integral role in stabilisation of microtubules and axonal transport in neurons. As well as its role in susceptibility to neurodegeneration, previous studies have found an association between the MAPT haplotype and intracranial volume and regional grey matter volumes in healthy adults. The glycogen synthase kinase-3? gene (GSK3B) codes for a serine/threonine kinase that phosphorylates various proteins, including tau, and has also been associated with risk for neurodegenerative disorders and schizophrenia. We examined the effects of MAPT and two functional promoter polymorphisms in GSK3B (rs3755557 and rs334558) on total grey matter and intracranial volume in three independent cohorts totaling 776 neurologically healthy individuals. In vitro analyses revealed a significant effect of rs3755557 on gene expression, and altered binding of at least two transcription factors, Octamer transcription factor 1 (Oct-1) and Pre-B-cell leukemia transcription factor 1 (Pbx-1), to the GSK3B promoter. Meta-analysis across the three cohorts revealed a significant effect of rs3755557 on total grey matter volume (summary B?=?0.082, 95% confidence interval?=?0.037-0.128) and intracranial volume (summary B?=?0.113, 95% confidence interval?=?0.082-0.144). No significant effect was observed for MAPT H1/H2 diplotype or GSK3B rs334558 on total grey matter or intracranial volume. Our genetic and biochemical analyses have identified a role for GSK3B in brain development, which could have important aetiological implications for neurodegenerative and neurodevelopmental disorders.
SCZ Keywordsschizophrenia
10J Psychiatr Res 2014 Jan 48: 94-101
PMID24128664
TitleIncreased susceptibility to apoptosis in cultured fibroblasts from antipsychotic-naïve first-episode schizophrenia patients.
AbstractAltered apoptosis has been proposed as a potential mechanism involved in the abnormal neurodevelopment and neurodegenerative processes associated with schizophrenia. The aim of this study was to investigate in primary fibroblast cultures whether antipsychotic-naïve patients with first-episode schizophrenia have greater apoptotic susceptibility than healthy controls. Cell growth, cell viability and various apoptotic hallmarks (caspase-3 activity, translocation of phosphatidylserine, chromatin condensation and gene expression of AKT1, BAX, BCL2, CASP3, GSK3B and P53) were measured in fibroblast cultures obtained from skin biopsies of patients (n = 11) and healthy controls (n = 8), both in basal conditions and after inducing apoptosis with staurosporine. Compared to controls, cultured fibroblasts from patients showed higher caspase-3 activity and lower BCL2 expression. When exposed to staurosporine, fibroblasts from patients also showed higher caspase-3 activity; a higher percentage of cells with translocated phosphatidylserine and condensed chromatin; and higher p53 expression compared to fibroblasts from controls. No differences in cell viability or cell growth were detected. These results strongly support the hypothesis that first-episode schizophrenia patients may have increased susceptibility to apoptosis, which may be involved in the onset and progression of the disease.
SCZ Keywordsschizophrenia
11Psychiatry Res 2015 Aug 228: 843-8
PMID26027441
TitleBeta-catenin in schizophrenia: Possibly deleterious novel mutation.
Abstractschizophrenia is a debilitating psychiatric disorder, affecting approximately 1% of the human population. Mostly genetic factors contribute to schizophrenia, but the genetics are complex and various aspects of brain functioning and structure, from development to synapse plasticity, seem to be involved in the pathogenesis. The goal of the study was to look for novel mutations in genes, implicated in molecular networks, important in schizophrenia. In the study four candidate genes taking part in the WNT signaling pathway were analyzed by sequencing in a cohort of 87 schizophrenia patients from Saint Petersburg, Russia. The gene list included CTNNB1 (beta-catenin), GSK3B, WNT2B and WNT7B. The impact of discovered variants on the protein function was analyzed in silico. We found three variants in the genes CTNNB1 and WNT7B, absent in healthy controls, including 212 controls from the same geographic area. The novel mutation c.1943A>G (p.N648S) in CTNNB1 seems to be the best candidate for disease-associated mutation in this study, as it damages the protein product in silico. This is the first study reporting mutations in CTNNB1 in schizophrenia.
SCZ Keywordsschizophrenia
12J Affect Disord 2015 Oct 185: 149-55
PMID26186530
TitleThe GSK3B gene confers risk for both major depressive disorder and schizophrenia in the Han Chinese population.
AbstractGlycogen synthease kinase-3B is a key gene encoding a protein kinase which is abundant in brain, and is involved in signal transduction cascades of neuronal cell development and energy metabolism. Previous researches proposed GSK3B as a potential region for schizophrenia.
To validate the susceptibility of GSK3B to major depressive disorder, and to investigate the overlapping risk conferred by GSK3B for mental disorders, we performed a large-scale case-control study, analyzed 6 tag single nucleotide polymorphisms using TaqMan® technology in 1,045 major depressive disorder patients, 1,235 schizophrenia patients and 1,235 normal controls of Han Chinese origin.
We found rs334535 (Pallele=2.79E-03, Pgenotype=5.00E-03, OR=1.429) and rs2199503 (Pallele=0.020, Pgenotype= 0.040, OR=1.157) showed association with major depressive disorder before Bonferroni correction. rs6771023 (adjusted Pallele=1.64E-03, adjusted Pgenotype=6.00E-03, OR=0.701) and rs2199503 (adjusted Pallele=0.001, adjusted Pgenotype=0.002, OR=1.251) showed significant association with schizophrenia after Bonferroni correction. rs2199503 (adjusted Pallele=1.70E-03, adjusted Pgenotype=0.006, OR=1.208) remained to be significant in the combined cases of major depressive disorder and schizophrenia after Bonferroni correction.
Further validations of our findings in samples with larger scale are suggested, and functional genomic study is needed to elucidate the role of GSK3B in signal pathway and psychiatric disorders.
Our results provide evidence that the GSK3B gene could be a promising region which contains genetic risk for both major depressive disorder and schizophrenia in the Han Chinese population. The study on variants conferring overlapping risk for multiple psychiatric disorders could be tangible pathogenesis support and clinical or diagnostic references.
SCZ Keywordsschizophrenia
13Int. J. Neuropsychopharmacol. 2015 Jan 18: -1
PMID25539505
TitleTargeted multiplexed selected reaction monitoring analysis evaluates protein expression changes of molecular risk factors for major psychiatric disorders.
AbstractExtensive research efforts have generated genomic, transcriptomic, proteomic, and functional data hoping to elucidate psychiatric pathophysiology. Selected reaction monitoring, a recently developed targeted proteomic mass spectrometric approach, has made it possible to evaluate previous findings and hypotheses with high sensitivity, reproducibility, and quantitative accuracy.
Here, we have developed a labelled multiplexed selected reaction monitoring assay, comprising 56 proteins previously implicated in the aetiology of major psychiatric disorders, including cell type markers or targets and effectors of known psychopharmacological interventions. We analyzed postmortem anterior prefrontal cortex (Brodmann area 10) tissue of patients diagnosed with schizophrenia (n=22), bipolar disorder (n=23), and major depressive disorder with (n=11) and without (n=11) psychotic features compared with healthy controls (n=22).
Results agreed with several previous studies, with the finding of alterations of Wnt-signalling and glutamate receptor abundance predominately in bipolar disorder and abnormalities in energy metabolism across the neuropsychiatric disease spectrum. Calcium signalling was predominantly affected in schizophrenia and affective psychosis. Interestingly, we were able to show a decrease of all 4 tested oligodendrocyte specific proteins (MOG, MBP, MYPR, CNPase) in bipolar disorder and to a lesser extent in schizophrenia and affective psychosis. Finally, we provide new evidence linking ankyrin 3 specifically to affective psychosis and the 22q11.2 deletion syndrome-associated protein septin 5 to schizophrenia.
Our study highlights the potential of selected reaction monitoring to evaluate the protein abundance levels of candidate markers of neuropsychiatric spectrum disorders, providing a high throughput multiplex platform for validation of putative disease markers and drug targets.
SCZ Keywordsschizophrenia
14Schizophr Bull 2015 May 41: 715-27
PMID25380769
TitleCommon variants in the MKL1 gene confer risk of schizophrenia.
AbstractGenome-wide association studies (GWAS) of schizophrenia have identified multiple risk variants with robust association signals for schizophrenia. However, these variants could explain only a small proportion of schizophrenia heritability. Furthermore, the effect size of these risk variants is relatively small (eg, most of them had an OR less than 1.2), suggesting that additional risk variants may be detected when increasing sample size in analysis. Here, we report the identification of a genome-wide significant schizophrenia risk locus at 22q13.1 by combining 2 large-scale schizophrenia cohort studies. Our meta-analysis revealed that 7 single nucleotide polymorphism (SNPs) on chromosome 22q13.1 reached the genome-wide significance level (P < 5.0×10(-8)) in the combined samples (a total of 38441 individuals). Among them, SNP rs6001946 had the most significant association with schizophrenia (P = 2.04×10(-8)). Interestingly, all 7 SNPs are in high linkage disequilibrium and located in the MKL1 gene. Expression analysis showed that MKL1 is highly expressed in human and mouse brains. We further investigated functional links between MKL1 and proteins encoded by other schizophrenia susceptibility genes in the whole human protein interaction network. We found that MKL1 physically interacts with GSK3B, a protein encoded by a well-characterized schizophrenia susceptibility gene. Collectively, our results revealed that genetic variants in MKL1 might confer risk to schizophrenia. Further investigation of the roles of MKL1 in the pathogenesis of schizophrenia is warranted.
SCZ Keywordsschizophrenia
15Mol. Psychiatry 2016 Jun 21: 768-85
PMID27046645
TitleTowards understanding and predicting suicidality in women: biomarkers and clinical risk assessment.
AbstractWomen are under-represented in research on suicidality to date. Although women have a lower rate of suicide completion than men, due in part to the less-violent methods used, they have a higher rate of suicide attempts. Our group has previously identified genomic (blood gene expression biomarkers) and clinical information (apps) predictors for suicidality in men. We now describe pilot studies in women. We used a powerful within-participant discovery approach to identify genes that change in expression between no suicidal ideation (no SI) and high suicidal ideation (high SI) states (n=12 participants out of a cohort of 51 women psychiatric participants followed longitudinally, with diagnoses of bipolar disorder, depression, schizoaffective disorder and schizophrenia). We then used a Convergent Functional Genomics (CFG) approach to prioritize the candidate biomarkers identified in the discovery step by using all the prior evidence in the field. Next, we validated for suicidal behavior the top-ranked biomarkers for SI, in a demographically matched cohort of women suicide completers from the coroner's office (n=6), by assessing which markers were stepwise changed from no SI to high SI to suicide completers. We then tested the 50 biomarkers that survived Bonferroni correction in the validation step, as well as top increased and decreased biomarkers from the discovery and prioritization steps, in a completely independent test cohort of women psychiatric disorder participants for prediction of SI (n=33) and in a future follow-up cohort of psychiatric disorder participants for prediction of psychiatric hospitalizations due to suicidality (n=24). Additionally, we examined how two clinical instruments in the form of apps, Convergent Functional Information for Suicidality (CFI-S) and Simplified Affective State Scale (SASS), previously tested in men, perform in women. The top CFI-S item distinguishing high SI from no SI states was the chronic stress of social isolation. We then showed how the clinical information apps combined with the 50 validated biomarkers into a broad predictor (UP-Suicide), our apriori primary end point, predicts suicidality in women. UP-Suicide had a receiver-operating characteristic (ROC) area under the curve (AUC) of 82% for predicting SI and an AUC of 78% for predicting future hospitalizations for suicidality. Some of the individual components of the UP-Suicide showed even better results. SASS had an AUC of 81% for predicting SI, CFI-S had an AUC of 84% and the combination of the two apps had an AUC of 87%. The top biomarker from our sequential discovery, prioritization and validation steps, BCL2, predicted future hospitalizations due to suicidality with an AUC of 89%, and the panel of 50 validated biomarkers (BioM-50) predicted future hospitalizations due to suicidality with an AUC of 94%. The best overall single blood biomarker for predictions was PIK3C3 with an AUC of 65% for SI and an AUC of 90% for future hospitalizations. Finally, we sought to understand the biology of the biomarkers. BCL2 and GSK3B, the top CFG scoring validated biomarkers, as well as PIK3C3, have anti-apoptotic and neurotrophic effects, are decreased in expression in suicidality and are known targets of the anti-suicidal mood stabilizer drug lithium, which increases their expression and/or activity. Circadian clock genes were overrepresented among the top markers. Notably, PER1, increased in expression in suicidality, had an AUC of 84% for predicting future hospitalizations, and CSNK1A1, decreased in expression, had an AUC of 96% for predicting future hospitalizations. Circadian clock abnormalities are related to mood disorder, and sleep abnormalities have been implicated in suicide. Docosahexaenoic acid signaling was one of the top biological pathways overrepresented in validated biomarkers, which is of interest given the potential therapeutic and prophylactic benefits of omega-3 fatty acids. Some of the top biomarkers from the current work in women showed co-directionality of change in expression with our previous work in men, whereas others had changes in opposite directions, underlying the issue of biological context and differences in suicidality between the two genders. With this study, we begin to shed much needed light in the area of female suicidality, identify useful objective predictors and help understand gender commonalities and differences. During the conduct of the study, one participant committed suicide. In retrospect, when the analyses were completed, her UP-Suicide risk prediction score was at the 100 percentile of all participants tested.
SCZ Keywordsschizophrenia