1Schizophr. Res. 2010 Jul 120: 150-8
PMID20580881
TitleGene expression abnormalities and oligodendrocyte deficits in the internal capsule in schizophrenia.
AbstractDeficits in the expression of oligodendrocyte (Ol) and myelin genes have been described in numerous brain regions in schizophrenia (SZ) in association with abnormalities of cell cycle markers. We have previously reported a SZ-associated decrease in the expression of genes expressed after, but not prior to, the terminal differentiation of Ols in the posterior limb of the internal capsule (ICp). This pattern of deficits could reflect a failure of Ol precursors to exit the cell cycle and differentiate to meet the demands imposed by the high rate of apoptosis among myelinating Ols. Here we explore this hypothesis using quantitative real time PCR to examine the mRNA expression of additional genes in the ICp of the previously examined sample of 14 subjects with SZ and 15 normal controls (NCs). The genes examined in the present study were chosen because they are associated with particular phases of the cell cycle (CCND1, CCND2, p21(Cip1), p27(Kip1), and p57(Kip2)), with DNA replication and repair (PCNA), apoptosis (CASP3), or the Notch signaling pathway (JAG1, HES1, HES5, andDTX1). The Notch pathway influences whether Ol precursors continue to proliferate or exit the cell cycle. We also determined the densities of Ols in the ICp. Genes associated with maintenance of the cell cycle tended to exhibit increased expression levels in SZ relative to NCs and to be negatively correlated with the expression levels of the previously assessed mature Ol genes. In contrast, genes associated with cell cycle arrest tended to show the opposite pattern (decreased expression in SZ and positive correlations with mature Ol genes). CASP3 and PCNA expression levels were significantly decreased in SZ and positively correlated with mature Ol genes, suggesting that myelinating Ols may turnover more rapidly in normal controls than in subjects with SZ. JAG1 expression was significantly increased in SZ and exhibited positive correlations with mediators of the canonical Notch pathway but negative correlations with mature Ol genes. Ol densities were significantly decreased in SZ. These data are consistent with the hypothesis that Ol and myelin deficits in SZ involve a failure of Ol precursors to appropriately exit the cell cycle in order to differentiate and mature into myelinating Ols.
SCZ Keywordsschizophrenia, schizophrenic
2PLoS ONE 2010 -1 5: e8596
PMID20062533
TitleIncreased stathmin1 expression in the dentate gyrus of mice causes abnormal axonal arborizations.
AbstractPituitary adenylate cyclase-activating polypeptide (PACAP) is involved in multiple brain functions. To clarify the cause of abnormal behavior in PACAP deficient-mice, we attempted the identification of genes whose expression was altered in the dentate gyrus of PACAP-deficient mice using the differential display method. Expression of stathmin1 was up-regulated in the dentate gyrus at both the mRNA and protein levels. PACAP stimulation inhibited stathmin1 expression in PC12 cells, while increased stathmin1expression in neurons of the subgranular zone and in primary cultured hippocampal neurons induced abnormal arborization of axons. We also investigated the pathways involved in PACAP deficiency. Ascl1 binds to E10 box of the stathmin1 promoter and increases stathmin1 expression. Inhibitory bHLH proteins (HES1 and Id3) were rapidly up-regulated by PACAP stimulation, and HES1 could suppress Ascl1 expression and Id3 could inhibit Ascl1 signaling. We also detected an increase of stathmin1 expression in the brains of schizophrenic patients. These results suggest that up-regulation of stathmin1 in the dentate gyrus, secondary to PACAP deficiency, may create abnormal neuronal circuits that cause abnormal behavior.
SCZ Keywordsschizophrenia, schizophrenic
3Int. J. Neuropsychopharmacol. 2016 Feb 19: -1
PMID26232790
TitleQuetiapine Ameliorates Schizophrenia-Like Behaviors and Protects Myelin Integrity in Cuprizone Intoxicated Mice: The Involvement of Notch Signaling Pathway.
AbstractWhite matter disturbances and myelin impairment are key features of schizophrenia. The antipsychotic drug quetiapine can promote the maturation of oligodendrocytes, but the molecular mechanisms remain largely unknown.
The schizophrenia-like behaviors, degrees of demyelination, and levels of Notch signaling molecules in forebrains of adult male C57BL/6 mice were examined after fed with cuprizone (0.2% wt/wt) in the presence or absence of 10mg/kg/d quetiapine for 6 weeks. These parameters were also observed after the transcranial injection of Notch signaling inhibitor MW167 (1mM) daily during the last week of the treatment period.
Quetiapine ameliorated the schizophrenia-like behaviors and decreased expression of myelin basic protein and inhibition of Notch signaling molecules, such as Notch1, HES1, and Hes5, in the forebrain that induced by cuprizone. These beneficial effects of quetiapine were abolished by MW167.
The antipsychotic and myelin protective effects of quetiapine are mediated by Notch signaling in a mouse model of cuprizone-induced demyelination associated with schizophrenia-like behaviors. The Notch pathway might therefore be a novel target for the development of antipsychotic drugs.
SCZ Keywordsschizophrenia, schizophrenic
4Am. J. Med. Genet. B Neuropsychiatr. Genet. 2016 Mar 171: 290-9
PMID26620927
TitleA novel 3q29 deletion associated with autism, intellectual disability, psychiatric disorders, and obesity.
AbstractCopy number variation (CNV) has been associated with a variety of neuropsychiatric disorders, including intellectual disability/developmental delay (ID/DD), autism spectrum disorder (ASD), and schizophrenia (SCZ). Often, individuals carrying the same pathogenic CNV display high clinical variability. By array-CGH analysis, we identified a novel familial 3q29 deletion (1.36?Mb), centromeric to the 3q29 deletion region, which manifests with variable expressivity. The deletion was identified in a 3-year-old girl diagnosed with ID/DD and autism and segregated in six family members, all affected by severe psychiatric disorders including schizophrenia, major depression, anxiety disorder, and personality disorder. All individuals carrying the deletion were overweight or obese, and anomalies compatible with optic atrophy were observed in three out of four cases examined. Amongst the 10 genes encompassed by the deletion, the haploinsufficiency of Optic Atrophy 1 (OPA1), associated with autosomal dominant optic atrophy, is likely responsible for the ophthalmological anomalies. We hypothesize that the haploinsufficiency of ATPase type 13A4 (ATP13A4) and/or Hairy/Enhancer of Split Drosophila homolog 1 (HES1) contribute to the neuropsychiatric phenotype, while HES1 deletion might underlie the overweight/obesity. In conclusion, we propose a novel contiguous gene syndrome due to a proximal 3q29 deletion variably associated with autism, ID/DD, psychiatric traits and overweight/obesity. © 2015 Wiley Periodicals, Inc.
SCZ Keywordsschizophrenia, schizophrenic