1Biol. Psychiatry 2007 Oct 62: 711-21
PMID17568569
TitleMolecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia.
Abstractschizophrenia is characterized by complex gene expression changes. The transcriptome alterations in the prefrontal cortex have been the subject of several recent postmortem studies that yielded both convergent and divergent findings.
To increase measurement precision, we used a custom-designed DNA microarray platform with long oligonucleotides and multiple probes with replicates. The platform was designed to assess the expression of > 1800 genes specifically chosen because of their hypothesized roles in the pathophysiology of schizophrenia. The gene expression differences in dorsolateral prefrontal cortex samples from 14 matched pairs of schizophrenia and control subjects were analyzed with two technical replicates and four data mining approaches.
In addition to replicating many expression changes in synaptic, oligodendrocyte, and signal transduction genes, we uncovered and validated a robust immune/chaperone transcript upregulation in the schizophrenia samples.
We speculate that the overexpression of SERPINA3, IFITM1, IFITM2, IFITM3, CHI3L1, MT2A, CD14, HSPB1, HSPA1B, and HSPA1A in schizophrenia subjects represents a long-lasting and correlated signature of an early environmental insult during development that actively contributes to the pathophysiology of prefrontal dysfunction.
SCZ Keywordsschizophrenia
2Sci Rep 2013 -1 3: 3539
PMID24345775
TitleDysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness.
AbstractMolecular abnormalities within the glucocorticoid receptor (GR) stress signaling pathway may confer, or reflect, susceptibility to stress in schizophrenia and bipolar disorder, but the extent of such abnormalities in the brain is not known. Using RNA-Seq and qPCR in two postmortem cohorts totaling 55 schizophrenia, 34 bipolar disorder and 55 control individuals, we identified increased FKBP5 and PTGES3 mRNA expression, and decreased BAG1 mRNA expression, in the prefrontal cortex in schizophrenia cases relative to controls (68.0% [p < 0.001], 26.0% [p < 0.01] and 12.1% [p < 0.05] respectively). We also observed increased FKBP5 and decreased BAG1 mRNA expression in bipolar disorder (47.5% [p < 0.05] and 14.9% [p < 0.005]). There were no diagnostic differences in steady-state FKBP51 protein levels, nor in HSPA1A, HSP90AA1, DNAJB1 or HSPB1 mRNA levels. GR, co-factor and chaperone mRNA levels were strongly correlated. These results reveal coordinated cortical dysregulation of FKBP5, PTGES3, BAG1 and GR genes within the glucocorticoid signaling pathway in psychotic illness.
SCZ Keywordsschizophrenia