1Schizophr. Res. 2006 Jun 84: 253-71
PMID16632332
TitleGene regulation by hypoxia and the neurodevelopmental origin of schizophrenia.
AbstractNeurodevelopmental changes may underlie the brain dysfunction seen in schizophrenia. While advances have been made in our understanding of the genetics of schizophrenia, little is known about how non-genetic factors interact with genes for schizophrenia. The present analysis of genes potentially associated with schizophrenia is based on the observation that hypoxia prevails in the embryonic and fetal brain, and that interactions between neuronal genes, molecular regulators of hypoxia, such as hypoxia-inducible factor 1 (HIF-1), and intrinsic hypoxia occur in the developing brain and may create the conditions for complex changes in neurodevelopment. Consequently, we searched the literature for currently hypothesized candidate genes for susceptibility to schizophrenia that may be subject to ischemia-hypoxia regulation and/or associated with vascular expression. Genes were considered when at least two independent reports of a significant association with schizophrenia had appeared in the literature. The analysis showed that more than 50% of these genes, particularly AKT1, BDNF, CAPON, CCKAR, CHRNA7, CNR1, COMT, DNTBP1, GAD1, GRM3, IL10, MLC1, NOTCH4, NRG1, NR4A2/NURR1, PRODH, RELN, RGS4, RTN4/NOGO and TNF, are subject to regulation by hypoxia and/or are expressed in the vasculature. Future studies of genes proposed as candidates for susceptibility to schizophrenia should include their possible regulation by physiological or pathological hypoxia during development as well as their potential role in cerebral vascular function.
SCZ Keywordsschizophrenia, schizophrenic
2Schizophr. Res. 2006 Dec 88: 235-44
PMID16905295
TitleAssociation study of IL10, IL1beta, and IL1RN and schizophrenia using tag SNPs from a comprehensive database: suggestive association with rs16944 at IL1beta.
AbstractGenetic association studies of several candidate cytokine genes have been motivated by evidence of immune dysfunction among patients with schizophrenia. Intriguing but inconsistent associations have been reported with polymorphisms of three positional candidate genes, namely IL1beta, IL1RN, and IL10. We used comprehensive sequencing data from the Seattle SNPs database to select tag SNPs that represent all common polymorphisms in the Caucasian population at these loci. Associations with 28 tag SNPs were evaluated in 478 cases and 501 unscreened control individuals, while accounting for population sub-structure using the genomic control method. The samples were also stratified by gender, diagnostic category, and exposure to infectious agents. Significant association was not detected after correcting for multiple comparisons. However, meta-analysis of our data combined with previously published association studies of rs16944 (IL1beta -511) suggests that the C allele confers modest risk for schizophrenia among individuals reporting Caucasian ancestry, but not Asians (Caucasians, n=819 cases, 1292 controls; p=0.0013, OR=1.24, 95% CI 1.09, 1.41).
SCZ Keywordsschizophrenia, schizophrenic
3Schizophr Bull 2009 Nov 35: 1163-82
PMID18552348
TitleSchizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii.
AbstractMany genes implicated in schizophrenia can be related to glutamatergic transmission and neuroplasticity, oligodendrocyte function, and other families clearly related to neurobiology and schizophrenia phenotypes. Others appear rather to be involved in the life cycles of the pathogens implicated in the disease. For example, aspartylglucosaminidase (AGA), PLA2, SIAT8B, GALNT7, or B3GAT1 metabolize chemical ligands to which the influenza virus, herpes simplex, cytomegalovirus (CMV), rubella, or Toxoplasma gondii bind. The epidermal growth factor receptor (EGR/EGFR) is used by the CMV to gain entry to cells, and a CMV gene codes for an interleukin (IL-10) mimic that binds the host cognate receptor, IL10R. The fibroblast growth factor receptor (FGFR1) is used by herpes simplex. KPNA3 and RANBP5 control the nuclear import of the influenza virus. Disrupted in schizophrenia 1 (DISC1) controls the microtubule network that is used by viruses as a route to the nucleus, while DTNBP1, MUTED, and BLOC1S3 regulate endosomal to lysosomal routing that is also important in viral traffic. Neuregulin 1 activates ERBB receptors releasing a factor, EBP1, known to inhibit the influenza virus transcriptase. Other viral or bacterial components bind to genes or proteins encoded by CALR, FEZ1, FYN, HSPA1B, IL2, HTR2A, KPNA3, MED12, MED15, MICB, NQO2, PAX6, PIK3C3, RANBP5, or TP53, while the cerebral infectivity of the herpes simplex virus is modified by Apolipoprotein E (APOE). Genes encoding for proteins related to the innate immune response, including cytokine related (CCR5, CSF2RA, CSF2RB, IL1B, IL1RN, IL2, IL3, IL3RA, IL4, IL10, IL10RA, IL18RAP, lymphotoxin-alpha, tumor necrosis factor alpha [TNF]), human leukocyte antigen (HLA) antigens (HLA-A10, HLA-B, HLA-DRB1), and genes involved in antigen processing (angiotensin-converting enzyme and tripeptidyl peptidase 2) are all concerned with defense against invading pathogens. Human microRNAs (Hsa-mir-198 and Hsa-mir-206) are predicted to bind to influenza, rubella, or poliovirus genes. Certain genes associated with schizophrenia, including those also concerned with neurophysiology, are intimately related to the life cycles of the pathogens implicated in the disease. Several genes may affect pathogen virulence, while the pathogens in turn may affect genes and processes relevant to the neurophysiology of schizophrenia. For such genes, the strength of association in genetic studies is likely to be conditioned by the presence of the pathogen, which varies in different populations at different times, a factor that may explain the heterogeneity that plagues such studies. This scenario also suggests that drugs or vaccines designed to eliminate the pathogens that so clearly interact with schizophrenia susceptibility genes could have a dramatic effect on the incidence of the disease.
SCZ Keywordsschizophrenia, schizophrenic
4PLoS ONE 2013 -1 8: e70963
PMID23951054
TitleThe interaction of polymorphisms of IL10 and DBH was associated with general symptoms of PANSS with TD in Chinese Han schizophrenic patients.
AbstractTardive dyskinesia (TD) is a human hyperkinetic movement disorder as a result of potentially irreversible long-term chronic first-generation antipsychotic medications. Unfortunately, mechanisms involved in the development of TD have been poorly understood. Previous studies have indicated that some genetic polymorphisms of immune system and dopamine beta-hydroxylase (DBH) genes may be involved in the pathogenesis of TD. Rs1800872 and rs72393728 are located on the promoter of interleukin-10 (IL10) and DBH gene, respectively. The genetic association between the rs1800872 and TD is unclear. Previous studies have indicated that genetic variations of IL 10 and DBH are implicated in the positive and negative symptoms in schizophrenia. However, the interaction of two variations with severity of TD and symptoms of schizophrenic patients with TD has not been reported. The present study investigated whether these variations and their interaction were associated with clinical phenotypes of TD with schizophrenia in a genetically homogeneous northern Chinese Han population.
Rs1800872 and rs72393728 were genotyped in schizophrenic patients with TD (n = 372) and without TD (NTD; n = 412). The Abnormal Involuntary Movement Scale (AIMS) and Positive and Negative Syndrome Scale (PANSS) were applied to assess the severity of TD and psychopathology of schizophrenia, respectively.
The allele and genotype frequencies of rs1800872 and rs72393728 did not significantly differ between TD and NTD patients (p>0.05). No significant difference was found in the AIMS total score among the genotypes of two loci (p>0.05). Interestingly, the interaction of rs1800872 and rs72393728 showed a significant association with the PANSS general score (p = 0.011), and a trend toward to the PANSS total score (p = 0.055).
These findings suggest that the interaction of rs1800872 and rs72393728 variants may play a role in psychopathology of the general symptoms on PANSS in schizophrenic patients with TD in a northern Chinese Han population.
SCZ Keywordsschizophrenia, schizophrenic
5PLoS ONE 2013 -1 8: e70963
PMID23951054
TitleThe interaction of polymorphisms of IL10 and DBH was associated with general symptoms of PANSS with TD in Chinese Han schizophrenic patients.
AbstractTardive dyskinesia (TD) is a human hyperkinetic movement disorder as a result of potentially irreversible long-term chronic first-generation antipsychotic medications. Unfortunately, mechanisms involved in the development of TD have been poorly understood. Previous studies have indicated that some genetic polymorphisms of immune system and dopamine beta-hydroxylase (DBH) genes may be involved in the pathogenesis of TD. Rs1800872 and rs72393728 are located on the promoter of interleukin-10 (IL10) and DBH gene, respectively. The genetic association between the rs1800872 and TD is unclear. Previous studies have indicated that genetic variations of IL 10 and DBH are implicated in the positive and negative symptoms in schizophrenia. However, the interaction of two variations with severity of TD and symptoms of schizophrenic patients with TD has not been reported. The present study investigated whether these variations and their interaction were associated with clinical phenotypes of TD with schizophrenia in a genetically homogeneous northern Chinese Han population.
Rs1800872 and rs72393728 were genotyped in schizophrenic patients with TD (n = 372) and without TD (NTD; n = 412). The Abnormal Involuntary Movement Scale (AIMS) and Positive and Negative Syndrome Scale (PANSS) were applied to assess the severity of TD and psychopathology of schizophrenia, respectively.
The allele and genotype frequencies of rs1800872 and rs72393728 did not significantly differ between TD and NTD patients (p>0.05). No significant difference was found in the AIMS total score among the genotypes of two loci (p>0.05). Interestingly, the interaction of rs1800872 and rs72393728 showed a significant association with the PANSS general score (p = 0.011), and a trend toward to the PANSS total score (p = 0.055).
These findings suggest that the interaction of rs1800872 and rs72393728 variants may play a role in psychopathology of the general symptoms on PANSS in schizophrenic patients with TD in a northern Chinese Han population.
SCZ Keywordsschizophrenia, schizophrenic
6Transl Psychiatry 2014 -1 4: e406
PMID24984193
TitleIncreased M1/decreased M2 signature and signs of Th1/Th2 shift in chronic patients with bipolar disorder, but not in those with schizophrenia.
AbstractWe here present data on immune gene expression of chemokines, chemokine receptors, cytokines and regulatory T-cell (T-reg) markers in chronic patients suffering from either schizophrenia (SCZ, N=20) or bipolar disorder (BD=20) compared with healthy controls (HCs, N=20). We extracted RNA from peripheral blood mononuclear cells and performed real-time (RT)-PCR to measure mRNA levels of chemokines, chemokine receptors, cytokines and T-reg markers. All the analyses were Bonferroni-corrected. The classical monocyte activation (M1) markers il6, ccl3 were significantly increased in BD as compared with both HC and SCZ patients (P=0.03 and P=0.002; P=0.024 and P=0.021, respectively), whereas markers of alternative (M2) monocyte activation ccl1, ccl22 and IL10 were coherently decreased (controls: P=0.01, P=0.001 and P=0.09; SCZ subjects: P=0.02, P=0.05 and P=0.011, respectively). Concerning T-cell markers, BD patients had compared with HC downregulated ccr5 (P=0.02) and upregulated il4 (P=0.04) and compared with both healthy and SCZ individuals downregulated ccl2 (P=0.006 and P=0.003) and tgf? (P=0.004 and P=0.007, respectively). No significant associations were found between any immune gene expression and clinical variables (prior hospitalizations, Brief Psychiatric Rating Scale, medications' dosages and lifetime administration). Although some markers are expressed by different immune cell types, these findings suggest a coherent increased M1/decrease M2 signature in the peripheral blood of BD patients with potential Th1/Th2 shift. In contrast, all the explored immune marker levels were preserved in SCZ. Further larger studies are needed to investigate the relevance of inflammatory response in BD, trying to correlate it to psychopathology, treatment and outcome measures and, possibly, to brain connectivity.
SCZ Keywordsschizophrenia, schizophrenic
7Schizophr. Res. 2015 Dec 169: 1-9
PMID26481614
TitleAssociation study of functional polymorphisms in interleukins and interleukin receptors genes: IL1A, IL1B, IL1RN, IL6, IL6R, IL10, IL10RA and TGFB1 in schizophrenia in Polish population.
Abstractschizophrenia has been associated with a large range of autoimmune diseases, with a history of any autoimmune disease being associated with a 45% increase in risk for the illness. The inflammatory system may trigger or modulate the course of schizophrenia through complex mechanisms influencing neurodevelopment, neuroplasticity and neurotransmission. In particular, increases or imbalance in cytokine before birth or during the early stages of life may affect neurodevelopment and produce vulnerability to the disease. A total of 27 polymorphisms of IL1N gene: rs1800587, rs17561; IL1B gene: rs1143634, rs1143643, rs16944, rs4848306, rs1143623, rs1143633, rs1143627; IL1RN gene: rs419598, rs315952, rs9005, rs4251961; IL6 gene: rs1800795, rs1800797; IL6R gene: rs4537545, rs4845617, rs2228145, IL10 gene: rs1800896, rs1800871, rs1800872, rs1800890, rs6676671; IL10RA gene: rs2229113, rs3135932; TGF1B gene: rs1800469, rs1800470; each selected on the basis of molecular evidence for functionality, were investigated in this study. Analysis was performed on a group of 621 patients with diagnosis of schizophrenia and 531 healthy controls in Polish population. An association of rs4848306 in IL1B gene, rs4251961 in IL1RN gene, rs2228145 and rs4537545 in IL6R with schizophrenia have been observed. rs6676671 in IL10 was associated with early age of onset. Strong linkage disequilibrium was observed between analyzed polymorphisms in each gene, except of IL10RA. We observed that haplotypes composed of rs4537545 and rs2228145 in IL6R gene were associated with schizophrenia. Analyses with family history of schizophrenia, other psychiatric disorders and alcohol abuse/dependence did not show any positive findings. Further studies on larger groups along with correlation with circulating protein levels are needed.
SCZ Keywordsschizophrenia, schizophrenic
8Am. J. Med. Genet. B Neuropsychiatr. Genet. 2016 Mar 171: 181-202
PMID26462458
TitleCurrently recognized genes for schizophrenia: High-resolution chromosome ideogram representation.
AbstractA large body of genetic data from schizophrenia-related research has identified an assortment of genes and disturbed pathways supporting involvement of complex genetic components for schizophrenia spectrum and other psychotic disorders. Advances in genetic technology and expanding studies with searchable genomic databases have led to multiple published reports, allowing us to compile a master list of known, clinically relevant, or susceptibility genes contributing to schizophrenia. We searched key words related to schizophrenia and genetics from peer-reviewed medical literature sources, authoritative public access psychiatric websites and genomic databases dedicated to gene discovery and characterization of schizophrenia. Our list of 560 genes were arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms. Genome wide pathway analysis using GeneAnalytics was carried out on the resulting list of genes to assess the underlying genetic architecture for schizophrenia. Recognized genes of clinical relevance, susceptibility or causation impact a broad range of biological pathways and mechanisms including ion channels (e.g., CACNA1B, CACNA1C, CACNA1H), metabolism (e.g., CYP1A2, CYP2C19, CYP2D6), multiple targets of neurotransmitter pathways impacting dopamine, GABA, glutamate, and serotonin function, brain development (e.g., NRG1, RELN), signaling peptides (e.g., PIK3CA, PIK4CA) and immune function (e.g., HLA-DRB1, HLA-DQA1) and interleukins (e.g., IL1A, IL10, IL6). This summary will enable clinical and laboratory geneticists, genetic counselors, and other clinicians to access convenient pictorial images of the distribution and location of contributing genes to inform diagnosis and gene-based treatment as well as provide risk estimates for genetic counseling of families with affected relatives. © 2015 Wiley Periodicals, Inc.
SCZ Keywordsschizophrenia, schizophrenic
9Brain Behav. Immun. 2016 Mar -1: -1
PMID26971470
TitleContribution of IL-10 and its -592 A/C polymorphism to cognitive functions in first-episode drug-naive schizophrenia.
AbstractNumerous studies have shown that proinflammatory cytokines produced by immune cells in the brain have deleterious effects on cognitive functions. In contrast, IL-10, an anti-inflammatory cytokine, can be neuroprotective and prevent neuronal dysfunction. However, few studies have linked the role of IL-10 to cognitive deficits in schizophrenia. In this study, serum IL-10 levels and genotypes for the IL10 -592 A/C promoter polymorphism were measured in a cohort of first-episode drug-naïve schizophrenic patients (FEDN-S) (n=256) and healthy control subjects (HC) (n=540). All participants were assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and psychopathology was assessed by the Positive and Negative Syndrome Scale (PANSS). In a separate transcriptomic data set containing 577 healthy human brain samples, we analyzed IL-10 and IL-10 RA/B-associated genetic networks in order to ascertain potential functions for IL-10 in the brain. We found a significant difference in allelic frequency between FEDN-S and HC subjects. The A allelic variant was associated with reduced serum IL-10 levels and worse attentional performance in FEDN-S but not in HC subjects. Moreover, serum IL-10 levels were correlated with the extent of cognitive impairment, especially attentional performance in the schizophrenic A-allele carriers. In human brain transcriptomic coexpression analysis, we found that genes most significantly co-expressed with IL10 were associated with synaptic vesicle transportation, and both IL10RA and IL10RB were most significantly co-expressed not only with genes that regulate inflammation but also with those that participate in synaptic formation. The IL10-592 A/C genetic variant was more common in schizophrenic patients than HC and was associated with lower IL-10 serum levels and worse attentional performance in these patients. Furthermore, the IL10 gene and its receptors in the healthy human brain appear to regulate inflammation and synaptic functions that are important for cognition, and hence its deficiency in schizophrenia may contribute to cognitive impairment.
SCZ Keywordsschizophrenia, schizophrenic
10Brain Behav. Immun. 2016 Mar -1: -1
PMID26971470
TitleContribution of IL-10 and its -592 A/C polymorphism to cognitive functions in first-episode drug-naive schizophrenia.
AbstractNumerous studies have shown that proinflammatory cytokines produced by immune cells in the brain have deleterious effects on cognitive functions. In contrast, IL-10, an anti-inflammatory cytokine, can be neuroprotective and prevent neuronal dysfunction. However, few studies have linked the role of IL-10 to cognitive deficits in schizophrenia. In this study, serum IL-10 levels and genotypes for the IL10 -592 A/C promoter polymorphism were measured in a cohort of first-episode drug-naïve schizophrenic patients (FEDN-S) (n=256) and healthy control subjects (HC) (n=540). All participants were assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and psychopathology was assessed by the Positive and Negative Syndrome Scale (PANSS). In a separate transcriptomic data set containing 577 healthy human brain samples, we analyzed IL-10 and IL-10 RA/B-associated genetic networks in order to ascertain potential functions for IL-10 in the brain. We found a significant difference in allelic frequency between FEDN-S and HC subjects. The A allelic variant was associated with reduced serum IL-10 levels and worse attentional performance in FEDN-S but not in HC subjects. Moreover, serum IL-10 levels were correlated with the extent of cognitive impairment, especially attentional performance in the schizophrenic A-allele carriers. In human brain transcriptomic coexpression analysis, we found that genes most significantly co-expressed with IL10 were associated with synaptic vesicle transportation, and both IL10RA and IL10RB were most significantly co-expressed not only with genes that regulate inflammation but also with those that participate in synaptic formation. The IL10-592 A/C genetic variant was more common in schizophrenic patients than HC and was associated with lower IL-10 serum levels and worse attentional performance in these patients. Furthermore, the IL10 gene and its receptors in the healthy human brain appear to regulate inflammation and synaptic functions that are important for cognition, and hence its deficiency in schizophrenia may contribute to cognitive impairment.
SCZ Keywordsschizophrenia, schizophrenic