1J. Physiol. (Lond.) 2010 Sep 588: 3349-54
PMID20530112
TitleSignificance of SGK1 in the regulation of neuronal function.
AbstractThe present brief review highlights the putative role of the serum- and glucocorticoid-inducible-kinase-1 (SGK1) in the regulation of neuronal function. SGK1 is genomically upregulated by cell shrinkage and by a variety of hormones including mineralocorticoids and glucocorticoids. The kinase is activated by insulin and growth factors via phosphatidylinositide-3-kinase (PI3-kinase), phosphoinositide-dependent kinase PDK1 and mammalian target of rapamycin mTORC2. SGK1 upregulates ion channels (e.g. SCN5A, ENaC, ASIC1, TRPV5,6, ROMK, Kv1.1-5, KCNEx/KCNQ1-5, GluR6, VSOAC, ClC2, CFTR), carriers (e.g. NHE3, NKCC2, NCC, NaPiIIb, SMIT, GLUT1,4, SGLT1, NaDC, EAAT1-5, SN1, ASCT2, 4F2/LAT, PepT2), and the Na(+)/K(+)-ATPase. SGK1 regulates enzymes (e.g. glycogen-synthase-kinase-3, ubiquitin-ligase Nedd4-2, phosphomannose-mutase-2), and transcription factors (e.g. forkhead transcription factor Foxo3a, ?-catenin, nuclear factor-kappa-B (NFB)). SGK1 participates in the regulation of transport, hormone release, neuroexcitability, inflammation, coagulation, cell proliferation and apoptosis. SGK1 contributes to regulation of renal Na(+) retention, renal K(+) elimination, salt appetite, gastric acid secretion, intestinal Na(+)/H(+) exchange and nutrient transport, insulin-dependent salt sensitivity of blood pressure, salt sensitivity of peripheral glucose uptake, cardiac repolarization and memory consolidation. Presumably, SGK1 contributes to the regulation of diverse cerebral functions (e.g. memory consolidation, fear retention) and the pathophysiology of several cerebral diseases (e.g. Parkinson's disease, schizophrenia, depression, Alzheimer's disease). Despite multiple SGK1 functions, the phenotype of the SGK1 knockout mouse is mild and becomes only apparent under challenging conditions.
SCZ Keywordsschizophrenia
2Neuron 2016 Apr 90: 43-55
PMID26971948
TitlePsychiatric Risk Gene Transcription Factor 4 Regulates Intrinsic Excitability of Prefrontal Neurons via Repression of SCN10a and KCNQ1.
AbstractTranscription Factor 4 (TCF4) is a clinically pleiotropic gene associated with schizophrenia and Pitt-Hopkins syndrome (PTHS). To gain insight about the neurobiology of TCF4, we created an in vivo model of PTHS by suppressing Tcf4 expression in rat prefrontal neurons immediately prior to neurogenesis. This cell-autonomous genetic insult attenuated neuronal spiking by increasing the afterhyperpolarization. At the molecular level, using a novel technique called iTRAP that combined in utero electroporation and translating ribosome affinity purification, we identified increased translation of two ion channel genes, KCNQ1 and Scn10a. These ion channel candidates were validated by pharmacological rescue and molecular phenocopy. Remarkably, similar excitability deficits were observed in prefrontal neurons from a Tcf4(+/tr) mouse model of PTHS. Thus, we identify TCF4 as a regulator of neuronal intrinsic excitability in part by repression of KCNQ1 and Scn10a and suggest that this molecular function may underlie pathophysiology associated with neuropsychiatric disorders.
SCZ Keywordsschizophrenia