1Am. J. Med. Genet. 2001 Jan 105: 99-104
PMID11425011
TitleAn association study between polymorphism of L1CAM gene and schizophrenia in a Japanese sample.
AbstractL1CAM, a neural cell adhesion molecule, plays an important role in the development of the central nervous system. The human L1CAM gene is located in Xq28. Mutations in the gene are responsible for a wide spectrum of neurological abnormalities and mental retardation. schizophrenia may result from early neurodevelopmental abnormalities. We screened 30 male and 30 female schizophrenic patients for their genomic sequence of the L1CAM gene in order to determine the DNA sequence variations. Three novel variations located in exon 18 (10564 G > A, GG/AA at codon 758), intron 11 (8575 A > C), and intron 25 (13504 C > T) were detected. An association study of the identified polymorphisms was then performed in a Japanese sample of 152 male and 115 female patients with schizophrenia and 121 male and 114 female control subjects. A statistically significant increase in the count of the 13504 T-allele was observed in the male patients, compared to the male controls, with no differences in the variations of exon 18 or intron 11. There was no statistically significant change in the distribution of allele or genotype of any variations in the female schizophrenics, in comparison with the female controls. These results suggest that the polymorphism in intron 25 plays a role in the genetic predisposition of male schizophrenia in the Japanese sample.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
2Am. J. Med. Genet. 2001 Jan 105: 99-104
PMID11425011
TitleAn association study between polymorphism of L1CAM gene and schizophrenia in a Japanese sample.
AbstractL1CAM, a neural cell adhesion molecule, plays an important role in the development of the central nervous system. The human L1CAM gene is located in Xq28. Mutations in the gene are responsible for a wide spectrum of neurological abnormalities and mental retardation. schizophrenia may result from early neurodevelopmental abnormalities. We screened 30 male and 30 female schizophrenic patients for their genomic sequence of the L1CAM gene in order to determine the DNA sequence variations. Three novel variations located in exon 18 (10564 G > A, GG/AA at codon 758), intron 11 (8575 A > C), and intron 25 (13504 C > T) were detected. An association study of the identified polymorphisms was then performed in a Japanese sample of 152 male and 115 female patients with schizophrenia and 121 male and 114 female control subjects. A statistically significant increase in the count of the 13504 T-allele was observed in the male patients, compared to the male controls, with no differences in the variations of exon 18 or intron 11. There was no statistically significant change in the distribution of allele or genotype of any variations in the female schizophrenics, in comparison with the female controls. These results suggest that the polymorphism in intron 25 plays a role in the genetic predisposition of male schizophrenia in the Japanese sample.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
3Am. J. Med. Genet. 2001 Jan 105: 99-104
PMID11425011
TitleAn association study between polymorphism of L1CAM gene and schizophrenia in a Japanese sample.
AbstractL1CAM, a neural cell adhesion molecule, plays an important role in the development of the central nervous system. The human L1CAM gene is located in Xq28. Mutations in the gene are responsible for a wide spectrum of neurological abnormalities and mental retardation. schizophrenia may result from early neurodevelopmental abnormalities. We screened 30 male and 30 female schizophrenic patients for their genomic sequence of the L1CAM gene in order to determine the DNA sequence variations. Three novel variations located in exon 18 (10564 G > A, GG/AA at codon 758), intron 11 (8575 A > C), and intron 25 (13504 C > T) were detected. An association study of the identified polymorphisms was then performed in a Japanese sample of 152 male and 115 female patients with schizophrenia and 121 male and 114 female control subjects. A statistically significant increase in the count of the 13504 T-allele was observed in the male patients, compared to the male controls, with no differences in the variations of exon 18 or intron 11. There was no statistically significant change in the distribution of allele or genotype of any variations in the female schizophrenics, in comparison with the female controls. These results suggest that the polymorphism in intron 25 plays a role in the genetic predisposition of male schizophrenia in the Japanese sample.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
4Biochem. Soc. Trans. 2010 Apr 38: 445-51
PMID20298200
TitleConfirmed rare copy number variants implicate novel genes in schizophrenia.
AbstractUnderstanding how cognitive processes including learning, memory, decision making and ideation are encoded by the genome is a key question in biology. Identification of sets of genes underlying human mental disorders is a path towards this objective. schizophrenia is a common disease with cognitive symptoms, high heritability and complex genetics. We have identified genes involved with schizophrenia by measuring differences in DNA copy number across the entire genome in 91 schizophrenia cases and 92 controls in the Scottish population. Our data reproduce rare and common variants observed in public domain data from >3000 schizophrenia cases, confirming known disease loci as well as identifying novel loci. We found copy number variants in PDE10A (phosphodiesterase 10A), CYFIP1 [cytoplasmic FMR1 (Fragile X mental retardation 1)-interacting protein 1], K(+) channel genes KCNE1 and KCNE2, the Down's syndrome critical region 1 gene RCAN1 (regulator of calcineurin 1), cell-recognition protein CHL1 (cell adhesion molecule with homology with L1CAM), the transcription factor SP4 (specificity protein 4) and histone deacetylase HDAC9, among others (see http://www.genes2cognition.org/SCZ-CNV). Integrating the function of these many genes into a coherent model of schizophrenia and cognition is a major unanswered challenge.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
5Dev. Dyn. 2010 May 239: 1490-501
PMID20225255
Title"CRASH"ing with the worm: insights into L1CAM functions and mechanisms.
AbstractThe L1 family of cell adhesion molecules (L1CAMs) in vertebrates has long been studied for its roles in nervous system development and function. Members of this family have been associated with distinct neurological disorders that include CRASH, autism, 3p syndrome, and schizophrenia. The conservation of L1CAMs in Drosophila and Caenorhabditis elegans allows the opportunity to take advantage of these simple model organisms and their accessible genetic manipulations to dissect L1CAM functions and mechanisms of action. This review summarizes the discoveries of L1CAMs made in C. elegans, showcasing this simple model organism as a powerful system to uncover L1CAM mechanisms and roles in healthy and diseased states.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
6Adv Neurobiol 2014 -1 8: 195-229
PMID25300138
TitleThe L1 family of cell adhesion molecules: a sickening number of mutations and protein functions.
AbstractL1-type proteins are transmembrane cell adhesion molecules with an evolutionary well-conserved protein domain structure of usually six immunoglobulin and five fibronectin type III domains. By engaging in many different protein-protein interactions they are involved in a multitude of molecular functions and are important players during the formation and maintenance of metazoan nervous systems. As a result, mutations in L1-type genes cause a great variety of phenotypes, most of which are neurological in nature. In humans, mutations in the L1CAM gene are responsible for L1 syndrome and other L1-type genes have been implicated in conditions as varied as mental retardation, autism, schizophrenia, multiple sclerosis, and other disorders. Equally, the overexpression of L1-type proteins appears to have deleterious effects in various types of human tumor cells, where they generally contribute to an increase in cell mobility and metastatic potential.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
7Transl Psychiatry 2014 -1 4: e394
PMID24893065
TitleTowards a molecular characterization of autism spectrum disorders: an exome sequencing and systems approach.
AbstractThe hypothetical 'AXAS' gene network model that profiles functional patterns of heterogeneous DNA variants overrepresented in autism spectrum disorder (ASD), X-linked intellectual disability, attention deficit and hyperactivity disorder and schizophrenia was used in this current study to analyze whole exome sequencing data from an Australian ASD cohort. An optimized DNA variant filtering pipeline was used to identify loss-of-function DNA variations. Inherited variants from parents with a broader autism phenotype and de novo variants were found to be significantly associated with ASD. Gene ontology analysis revealed that putative rare causal variants cluster in key neurobiological processes and are overrepresented in functions involving neuronal development, signal transduction and synapse development including the neurexin trans-synaptic complex. We also show how a complex gene network model can be used to fine map combinations of inherited and de novo variations in families with ASD that converge in the L1CAM pathway. Our results provide an important step forward in the molecular characterization of ASD with potential for developing a tool to analyze the pathogenesis of individual affected families.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
8Front Cell Neurosci 2014 -1 8: 80
PMID24688456
TitleApplying mass spectrometry-based qualitative proteomics to human amygdaloid complex.
AbstractThe amygdaloid complex is a key brain structure involved in the expression of behaviors and emotions such as learning, fear, and anxiety. Brain diseases including depression, epilepsy, autism, schizophrenia, and Alzheimer's disease, have been associated with amygdala dysfunction. For several decades, neuroanatomical, neurophysiological, volumetric, and cognitive approaches have been the gold standard techniques employed to characterize the amygdala functionality. However, little attention has been focused specifically on the molecular composition of the human amygdala from the perspective of proteomics. We have performed a global proteome analysis employing protein and peptide fractionation methods followed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS), detecting expression of at least 1820 protein species in human amygdala, corresponding to 1814 proteins which represent a nine-fold increase in proteome coverage with respect to previous proteomic profiling of the rat amygdala. Gene ontology analysis were used to determine biological process represented in human amygdala highlighting molecule transport, nucleotide binding, and oxidoreductase and GTPase activities. Bioinformatic analyses have revealed that nearly 4% of identified proteins have been previously associated to neurodegenerative syndromes, and 26% of amygdaloid proteins were also found to be present in cerebrospinal fluid (CSF). In particular, a subset of amygdaloid proteins was mainly involved in axon guidance, synaptic vesicle release, L1CAM interactome, and signaling pathways transduced by NGF and NCAM1. Taken together, our data contributes to the repertoire of the human brain proteome, serving as a reference library to provide basic information for understanding the neurobiology of the human amygdala.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics
9Genes Brain Behav. 2015 Apr 14: 345-56
PMID25809424
TitlePathway analysis of genome-wide association datasets of personality traits.
AbstractAlthough several genome-wide association (GWA) studies of human personality have been recently published, genetic variants that are highly associated with certain personality traits remain unknown, due to difficulty reproducing results. To further investigate these genetic variants, we assessed biological pathways using GWA datasets. Pathway analysis using GWA data was performed on 1089 Korean women whose personality traits were measured with the Revised NEO Personality Inventory for the 5-factor model of personality. A total of 1042 pathways containing 8297 genes were included in our study. Of these, 14 pathways were highly enriched with association signals that were validated in 1490 independent samples. These pathways include association of: Neuroticism with axon guidance [L1 cell adhesion molecule (L1CAM) interactions]; Extraversion with neuronal system and voltage-gated potassium channels; Agreeableness with L1CAM interaction, neurotransmitter receptor binding and downstream transmission in postsynaptic cells; and Conscientiousness with the interferon-gamma and platelet-derived growth factor receptor beta polypeptide pathways. Several genes that contribute to top-ranked pathways in this study were previously identified in GWA studies or by pathway analysis in schizophrenia or other neuropsychiatric disorders. Here we report the first pathway analysis of all five personality traits. Importantly, our analysis identified novel pathways that contribute to understanding the etiology of personality traits.
SCZ Keywordsschizophrenia, schizophrenic, schizophrenics