1Am. J. Med. Genet. A 2011 Nov 155A: 2739-45
TitleMYT1L is a candidate gene for intellectual disability in patients with 2p25.3 (2pter) deletions.
AbstractA partial deletion of chromosome band 2p25.3 (2pter) is a rarely described cytogenetic aberration in patients with intellectual disability (ID). Using microarrays we identified deletions of 2p25.3, sized 0.37-3.13 Mb, in three adult siblings and three unrelated patients. All patients had ID, obesity or overweight and/or a square-shaped stature without overt facial dysmorphic features. Combining our data with phenotypic and genotypic data of three patients from the literature we defined the minimal region of overlap which contained one gene, i.e., MYT1L. MYT1L is highly transcribed in the mouse embryonic brain where its expression is restricted to postmitotic differentiating neurons. In mouse-induced pluripotent stem cell (iPS) models, MYT1L is essential for inducing functional mature neurons. These resemble excitatory cortical neurons of the forebrain, suggesting a role for MYT1L in development of cognitive functions. Furthermore, MYT1L can directly convert human fibroblasts into functional neurons in conjunction with other transcription factors. MYT1L duplication was previously reported in schizophrenia, indicating that the gene is dosage-sensitive and that shared neurodevelopmental pathways may be affected in ID and schizophrenia. Finally, deletion of MYT1, another member of the Myelin Transcription Factor family involved in neurogenesis and highly similar to MYT1L, was recently described in ID as well. The identification of MYT1L as candidate gene for ID justifies further molecular studies aimed at detecting mutations and for mechanistic studies on its role in neuron development and on neuropathogenic effects of haploinsufficiency.
SCZ Keywordsschizophrenia
2Transl Psychiatry 2014 -1 4: e348
TitleNovel implications of Lingo-1 and its signaling partners in schizophrenia.
AbstractMyelination and neurite outgrowth both occur during brain development, and their disturbance has been previously been implicated in the pathophysiology of schizophrenia. Leucine-rich repeat and immunoglobulin domain-containing protein (Lingo-1) is a potent negative regulator of axonal myelination and neurite extension. As co-factors of Lingo-1 signaling (Nogo receptor (NgR), With No Lysine (K) (WNK1) and Myelin transcription factor 1 (MYT1)) have been implicated in the genetics of schizophrenia, we explored for the first time the role of Lingo-1 signaling pathways in this disorder. Lingo-1 protein, together with its co-receptor and co-factor proteins NgR, tumor necrosis factor (TNF) receptor orphan Y (TROY), p75, WNK1 and MYT1, have never been explored in the pathogenesis of schizophrenia. We examined protein levels of Lingo-1, NgR, TROY, p75, WNK1, MYT1 and myelin basic protein (MBP) (as a marker of myelination) within the post-mortem dorsolateral prefrontal cortex (DLPFC) (37 schizophrenia patients versus 37 matched controls) and hippocampus (Cornu Ammonis, CA1 and CA3) (20 schizophrenia patients versus 20 matched controls from the same cohort). Both of these brain regions are highly disrupted in the schizophrenia pathophysiology. There were significant increases in Lingo-1 (P<0.001) and MYT1 (P=0.023) and a reduction in NgR (P<0.001) in the DLPFC in schizophrenia subjects compared with controls. There were also increases in both TROY (P=0.001) and WNK1 (P=0.011) in the CA1 of schizophrenia subjects and, in contrast to the DLPFC, there was an increase in NgR (P=0.006) in the CA3 of schizophrenia subjects compared with controls. No significant difference was reported for MBP levels (P>0.05) between the schizophrenia and control groups in the three tested regions. This is the first time that a study has shown altered Lingo-1 signaling in the schizophrenia brain. Our novel findings may present a direct application for the use of a Lingo-1 antagonist to complement current and future schizophrenia therapies.
SCZ Keywordsschizophrenia
3Prog. Neuropsychopharmacol. Biol. Psychiatry 2015 Dec 63: 91-7
TitleAlterations of p75 neurotrophin receptor and Myelin transcription factor 1 in the hippocampus of perinatal phencyclidine treated rats.
AbstractPostnatal administration of phencyclidine (PCP) in rodents causes major disturbances to neurological processes resulting in severe modifications to normal behavioral traits into adulthood. It is routinely used to model psychiatric disorders such as schizophrenia, producing many of the dysfunctional processes in the brain that are present in this devastating disorder, including elevated levels of apoptosis during neurodevelopment and disruptions to myelin and plasticity processes. Lingo-1 (or Leucine-rich repeat and immunoglobulin domain-containing protein) is responsible for negatively regulating neurite outgrowth and the myelination of axons. Recent findings using a postmortem human brain cohort showed that Lingo-1 signaling partners in the Nogo receptor (NgR)/p75/TNF receptor orphan Y (TROY) signaling complex, and downstream signaling partners With No Lysine (K) (WNK1) and Myelin transcription factor 1 (MYT1), play a significant part in schizophrenia pathophysiology. Here we have examined the implication of Lingo-1 and its signaling partners in a neurodevelopmental model of schizophrenia using PCP to determine if these pathways are altered in the hippocampus throughout different stages of neurodevelopment. Male Sprague-Dawley rats were injected subcutaneously with PCP (10mg/kg) or saline solution on postnatal days (PN) 7, 9, and 11. Rats (n=6/group) were sacrificed at PN12, 5weeks, or 14weeks. Relative expression levels of Lingo-1 signaling proteins were examined in the hippocampus of the treated rats. p75 and MYT1 were decreased (0.001?p?0.011) in the PCP treated rats at PN12. There were no significant changes in any of the tested proteins at 5weeks (p>0.05). At 14weeks, p75, TROY, and MYT1 were increased in the PCP treated rats (0.014?p?0.022). This is the first report of an alteration in Lingo-1 signaling proteins in the rat hippocampus, both directly after PCP treatment in early development and in adulthood. Based on our results, we propose that components of the Lingo-1 signaling pathways may be involved in the acute neurotoxicity induced by perinatal administration of PCP in rats early in development and suggest that this may have implications for the hippocampal deficits seen in schizophrenia.
SCZ Keywordsschizophrenia