1Mol. Psychiatry 2002 -1 7: 560-3
PMID12140778
TitleAllelic association of the neuronal nitric oxide synthase (NOS1) gene with schizophrenia.
AbstractNitric oxide (NO) has been identified as a widespread and multifunctional biological messenger molecule in the central nervous system (CNS), with possible roles in neurotransmission, neurosecretion, synaptic plasticity, and tissue injury in many neurological disorders, including schizophrenia. Neuronal NO is widely produced in the brain from L-arginine catalyzed by neuronal NO synthase (NOS1). We therefore hypothesized that the NOS1 gene may play a role in the pathophysiology of schizophrenia. In the present study, we examined the genetic association between a novel single nucleotide polymorphism (SNP: a C-->T transition located 276 base pairs downstream from the translation termination site) of the human NOS1 gene, which is located in chromosome 12q24, and schizophrenia (215 Japanese patients with schizophrenia and 182 healthy controls). The allele frequencies of the polymorphism in exon 29 of the NOS1 gene differed significantly between patients with schizophrenia and controls (chi(2) = 20.10, df = 1, P = 0.000007; relative risk = 1.92; 95% confidence interval = 1.44-2.55). Our results suggest that the NOS1 gene polymorphism may confer increased susceptibility to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
2Schizophr. Res. 2003 Dec 65: 57-9
PMID14623375
TitleAssociation analysis for the CA repeat polymorphism of the neuronal nitric oxide synthase (NOS1) gene and schizophrenia.
Abstract-1
SCZ Keywordsschizophrenia, schizophrenic
3Neuromolecular Med. 2004 -1 5: 163-70
PMID15075442
TitleGenetic association analysis of neuronal nitric oxide synthase gene polymorphism with tardive dyskinesia.
AbstractPossible involvement of oxidative stress in the pathophysiology of tardive dyskinesia (TD) has been proposed. Long-term administration of neuroleptics alters dopaminergic turnover, yielding the increase of the formation of reactive oxygen species (ROS), which may lead to TD through neuronal toxicity as a consequence of oxidative stress. In the present study, the relationship between TD and a polymorphism of the neuronal nitric oxide synthase (NOS1) gene whose reaction product, nitric oxide (NO), is involved in oxidative stress was studied in 171 Japanese patients with schizophrenia, including 41 patients meeting TD criteria. The C/T polymorphism in exon 29 of the NOS1 gene was genotyped using polymerase chain reaction (PCR) amplification followed by restriction enzyme digestion. No significant difference in genotype frequencies was detected between subjects with and without TD (chi2 = 1.54, df = 2, p = 0.46). In addition, there was no difference in allele frequencies (chi2 = 0.42, df = 1, p = 0.51). These results suggest that the NOS1 gene polymorphism may not confer increased susceptibility to TD, although more investigations on other populations are warranted.
SCZ Keywordsschizophrenia, schizophrenic
4J Neural Transm (Vienna) 2004 May 111: 623-9
PMID15088155
TitleAssociation analysis of a neural nitric oxide synthase gene polymorphism and antipsychotics-induced tardive dyskinesia in Chinese schizophrenic patients.
AbstractRecent findings from rodent studies with chronic administration of antipsychotic drugs have indicated the role of neural nitric oxide synthase (NOS1) on the susceptibility of tardive dyskinesia (TD). In the present study, the association between a 3'-untranslated region C267T (3'-UTR C267T) polymorphism of the NOS1 gene and TD as well as TD severity was investigated in 251 Chinese schizophrenic patients with long-term antipsychotic treatment (TD: 128, non-TD: 123). After adjusting the effects of confounding factors, there was no significant association between NOS1 3'-UTR C276T genotypes and TD occurrence (p=0.758). With in the TD group, we could not discover a significant correlation between NOS1 3'-UTR C276T genotypes and the scores of abnormal involuntary movement scale (AIMS) (p=0.219 and 0.774). We concluded that the NOS1 3'-UTR C276T polymorphism might not play a major role in the susceptibility of TD development, or on the severity of TD.
SCZ Keywordsschizophrenia, schizophrenic
5Am. J. Hum. Genet. 2005 Dec 77: 918-36
PMID16380905
TitleBipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios.
AbstractBipolar, schizophrenia, and schizoaffective disorders are common, highly heritable psychiatric disorders, for which familial coaggregation, as well as epidemiological and genetic evidence, suggests overlapping etiologies. No definitive susceptibility genes have yet been identified for any of these disorders. Genetic heterogeneity, combined with phenotypic imprecision and poor marker coverage, has contributed to the difficulty in defining risk variants. We focused on families of Ashkenazi Jewish descent, to reduce genetic heterogeneity, and, as a precursor to genomewide association studies, we undertook a single-nucleotide polymorphism (SNP) genotyping screen of 64 candidate genes (440 SNPs) chosen on the basis of previous linkage or of association and/or biological relevance. We genotyped an average of 6.9 SNPs per gene, with an average density of 1 SNP per 11.9 kb in 323 bipolar I disorder and 274 schizophrenia or schizoaffective Ashkenazi case-parent trios. Using single-SNP and haplotype-based transmission/disequilibrium tests, we ranked genes on the basis of strength of association (P<.01). Six genes (DAO, GRM3, GRM4, GRIN2B, IL2RB, and TUBA8) met this criterion for bipolar I disorder; only DAO has been previously associated with bipolar disorder. Six genes (RGS4, SCA1, GRM4, DPYSL2, NOS1, and GRID1) met this criterion for schizophrenia or schizoaffective disorder; five replicate previous associations, and one, GRID1, shows a novel association with schizophrenia. In addition, six genes (DPYSL2, DTNBP1, G30/G72, GRID1, GRM4, and NOS1) showed overlapping suggestive evidence of association in both disorders. These results may help to prioritize candidate genes for future study from among the many suspected/proposed for schizophrenia and bipolar disorders. They provide further support for shared genetic susceptibility between these two disorders that involve glutamate-signaling pathways.
SCZ Keywordsschizophrenia, schizophrenic
6Mol. Psychiatry 2006 Mar 11: 286-300
PMID16389274
TitleA neuronal nitric oxide synthase (NOS-I) haplotype associated with schizophrenia modifies prefrontal cortex function.
AbstractNitric oxide (NO) is a gaseous neurotransmitter thought to play important roles in several behavioral domains. On a neurobiological level, NO acts as the second messenger of the N-methyl-D-aspartate receptor and interacts with both the dopaminergic as well as the serotonergic system. Thus, NO is a promising candidate molecule in the pathogenesis of endogenous psychoses and a potential target in their treatment. Furthermore, the chromosomal locus of the gene for the NO-producing enzyme NOS-I, 12q24.2, represents a major linkage hot spot for schizophrenic and bipolar disorder. To investigate whether the gene encoding NOS-I (NOS1) conveys to the genetic risk for those diseases, five NOS1 polymorphisms as well as a NOS1 mini-haplotype, consisting of two functional polymorphisms located in the transcriptional control region of NOS1, were examined in 195 chronic schizophrenic, 72 bipolar-I patients and 286 controls. Single-marker association analysis showed that the exon 1c promoter polymorphism was linked to schizophrenia (SCZ), whereas synonymous coding region polymorphisms were not associated with disease. Long promoter alleles of the repeat polymorphism were associated with less severe psychopathology. Analysis of the mini-haplotype also revealed a significant association with SCZ. Mutational screening did not detect novel exonic polymorphisms in patients, suggesting that regulatory rather than coding variants convey the genetic risk on psychosis. Finally, promoter polymorphisms impacted on prefrontal functioning as assessed by neuropsychological testing and electrophysiological parameters elicited by a Go-Nogo paradigm in 48 patients (continuous performance test). Collectively these findings suggest that regulatory polymorphisms of NOS1 contribute to the genetic risk for SCZ, and modulate prefrontal brain functioning.
SCZ Keywordsschizophrenia, schizophrenic
7Mol. Psychiatry 2006 Mar 11: 286-300
PMID16389274
TitleA neuronal nitric oxide synthase (NOS-I) haplotype associated with schizophrenia modifies prefrontal cortex function.
AbstractNitric oxide (NO) is a gaseous neurotransmitter thought to play important roles in several behavioral domains. On a neurobiological level, NO acts as the second messenger of the N-methyl-D-aspartate receptor and interacts with both the dopaminergic as well as the serotonergic system. Thus, NO is a promising candidate molecule in the pathogenesis of endogenous psychoses and a potential target in their treatment. Furthermore, the chromosomal locus of the gene for the NO-producing enzyme NOS-I, 12q24.2, represents a major linkage hot spot for schizophrenic and bipolar disorder. To investigate whether the gene encoding NOS-I (NOS1) conveys to the genetic risk for those diseases, five NOS1 polymorphisms as well as a NOS1 mini-haplotype, consisting of two functional polymorphisms located in the transcriptional control region of NOS1, were examined in 195 chronic schizophrenic, 72 bipolar-I patients and 286 controls. Single-marker association analysis showed that the exon 1c promoter polymorphism was linked to schizophrenia (SCZ), whereas synonymous coding region polymorphisms were not associated with disease. Long promoter alleles of the repeat polymorphism were associated with less severe psychopathology. Analysis of the mini-haplotype also revealed a significant association with SCZ. Mutational screening did not detect novel exonic polymorphisms in patients, suggesting that regulatory rather than coding variants convey the genetic risk on psychosis. Finally, promoter polymorphisms impacted on prefrontal functioning as assessed by neuropsychological testing and electrophysiological parameters elicited by a Go-Nogo paradigm in 48 patients (continuous performance test). Collectively these findings suggest that regulatory polymorphisms of NOS1 contribute to the genetic risk for SCZ, and modulate prefrontal brain functioning.
SCZ Keywordsschizophrenia, schizophrenic
8Schizophr Bull 2007 Nov 33: 1343-53
PMID17329232
TitleeIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia?
AbstractBipolar disorder and schizophrenia share common chromosomal susceptibility loci and many risk-promoting genes. Oligodendrocyte cell loss and hypomyelination are common to both diseases. A number of environmental risk factors including famine, viral infection, and prenatal or childhood stress may also predispose to schizophrenia or bipolar disorder. In cells, related stressors (starvation, viruses, cytokines, oxidative, and endoplasmic reticulum stress) activate a series of eIF2-alpha kinases, which arrest protein synthesis via the eventual inhibition, by phosphorylated eIF2-alpha, of the translation initiation factor eIF2B. Growth factors increase protein synthesis via eIF2B activation and counterbalance this system. The control of protein synthesis by eIF2-alpha kinases is also engaged by long-term potentiation and repressed by long-term depression, mediated by N-methyl-D-aspartate (NMDA) and metabotropic glutamate receptors. Many genes reportedly associated with both schizophrenia and bipolar disorder code for proteins within or associated with this network. These include NMDA (GRIN1, GRIN2A, GRIN2B) and metabotropic (GRM3, GRM4) glutamate receptors, growth factors (BDNF, NRG1), and many of their downstream signaling components or accomplices (AKT1, DAO, DAOA, DISC1, DTNBP1, DPYSL2, IMPA2, NCAM1, NOS1, NOS1AP, PIK3C3, PIP5K2A, PDLIM5, RGS4, YWHAH). They also include multiple gene products related to the control of the stress-responsive eIF2-alpha kinases (IL1B, IL1RN, MTHFR, TNF, ND4, NDUFV2, XBP1). Oligodendrocytes are particularly sensitive to defects in the eIF2B complex, mutations in which are responsible for vanishing white matter disease. The convergence of natural and genetic risk factors on this area in bipolar disorder and schizophrenia may help to explain the apparent vulnerability of this cell type in these conditions. This convergence may also help to reconcile certain arguments related to the importance of nature and nurture in the etiology of these psychiatric disorders. Both may affect common stress-related signaling pathways that dictate oligodendrocyte viability and synaptic plasticity.
SCZ Keywordsschizophrenia, schizophrenic
9Int. J. Neuropsychopharmacol. 2008 Dec 11: 1063-71
PMID18544180
TitleEvidence for association between the 5' flank of the NOS1 gene and schizophrenia in the Chinese population.
AbstractNitric oxide (NO) plays an important role in the dopaminergic and serotonergic system as the second messenger of the NMDA receptor and has possible roles in neurotransmission, neurosecretion, synaptic plasticity, and tissue injury in many neurological disorders, including schizophrenia. There is also genetic evidence to support the human NOS1 (neuronal nitric oxide synthase 1) gene as a promising candidate gene associated with schizophrenia. In this paper we conducted a case-control association study involving 1705 Chinese subjects and 12 genetic markers [11 single nucleotide polymorphisms (SNPs) and 1 microsatellite] mainly in the 5' flank region of the gene by direct sequencing and capillary electrophoresis. We identified SNP rs3782206 and several haplotypes derived from it as being significantly associated with schizophrenia and, specifically, in a paranoid subgroup. Our results strongly support a previous hypothesis that NOS1 contributes to the genetic risk of schizophrenia and suggest that further research on more NOS1 variants and its regular elements are warranted.
SCZ Keywordsschizophrenia, schizophrenic
10Int. J. Neuropsychopharmacol. 2008 Jun 11: 477-83
PMID18257968
TitleAssociation of functional polymorphisms in NOS1 and NOS3 with loudness dependence of auditory evoked potentials.
AbstractNitric oxide (NO) is a gaseous molecule with neurotransmitter properties that is involved in numerous functions in the central nervous system (CNS), the vascular system and also in macrophages. Haplotypes of NOS1 and NOS3 genes have been shown to be associated with different psychiatric disorders such as schizophrenia and bipolar disorder. Therefore, the detection of other characteristics of nitrinergic transmission is desirable. Because nitrinergic functioning influences serotonergic transmission, a functional marker of the serotonergic transmission, the loudness dependence of auditory evoked potentials (LDAEP), can be assumed to be influenced by nitrinergic changes as well. In order to clarify the relationship between nitrinergic transmission and LDAEP, 95 healthy subjects (41 males, 54 females) underwent electrophysiological recording and blood drawing for genotyping of single nucleotide polymorphisms (SNPs) and haplotypes of the NOS1 and NOS3 genes. Interestingly, two functional SNPs in both NOS1 (G-84A_exon 1c promoter polymorphism) and NOS3 (Glu298Asp) were associated with lower LDAEP. Further studies are needed to fully clarify the relationship between nitrinergic transmission, LDAEP and complex disorders such as schizophrenia and affective disorders.
SCZ Keywordsschizophrenia, schizophrenic
11Arch. Gen. Psychiatry 2009 Oct 66: 1045-54
PMID19805695
TitleInfluence of NOS1 on verbal intelligence and working memory in both patients with schizophrenia and healthy control subjects.
AbstractHuman and animal studies have implicated the gene NOS1 in both cognition and schizophrenia susceptibility.
To investigate whether a potential schizophrenia risk single-nucleotide polymorphism (rs6490121) identified in a recent genome-wide association study negatively influences cognition in patients with schizophrenia and healthy control subjects.
A comparison of both cases and controls grouped according to NOS1 genotype (GG vs AG vs AA) on selected measures of cognition in 2 independent samples. We tested for association between NOS1 rs6490121 and cognitive functions known to be impaired in schizophrenia (IQ, episodic memory, working memory, and attentional control) in an Irish sample. We then sought to replicate the significant results in a German sample.
Unrelated patients from general adult psychiatric inpatient and outpatient services and unrelated healthy volunteers from the general population were ascertained.
Patients with DSM-IV-diagnosed schizophrenia and healthy control subjects from independent samples of Irish (cases, n = 349; controls, n = 230) and German (cases, n = 232; controls, n = 1344) nationality.
A main effect of NOS1 genotype on verbal IQ and working memory was observed in the Irish sample where the homozygous carriers of the schizophrenia risk G allele performed poorly compared with the other genotype groups. These findings were replicated in the German sample, again with the GG genotype carriers performing below other genotype groups. Post hoc analysis of additional IQ measures (full-scale and performance IQ) in the German sample revealed that NOS1 GG carriers underperformed on these measures also.
NOS1 is associated with clinically significant variation in cognition. Whether this is a mechanism by which schizophrenia risk is increased (eg, via an influence on cognitive reserve) is yet to be confirmed.
SCZ Keywordsschizophrenia, schizophrenic
12Neuromolecular Med. 2009 -1 11: 123-7
PMID19513863
TitleNo association between polymorphisms of neuronal oxide synthase 1 gene (NOS1) and schizophrenia in a Japanese population.
AbstractThe neuronal nitric oxide synthase gene (NOS1) is located on 12q24, in a susceptibility region for schizophrenia, and produces nitric oxide (NO) in the brain. NO plays a role in neurotransmitter release and is the second messenger of the N-methyl-D-aspartate (NMDA) receptor. Furthermore, it is connected to the dopaminergic and serotonergic neural transmission systems. Therefore, abnormalities in the NO pathway are thought to be involved in the pathophysiology of schizophrenia. Several genetic studies showed an association of NOS1 with schizophrenia. However, results of replication studies have been inconsistent. Therefore, we conducted a replication study of NOS1 with schizophrenia in a Japanese sample. We selected seven SNPs (rs41279104, rs3782221, rs3782219, rs561712, rs3782206, rs2682826, and rs6490121) in NOS1 that were positively associated with schizophrenia in previous studies. Two SNPs showed an association with Japanese schizophrenic patients (542 cases and 519 controls, rs3782219: P allele = 0.0291 and rs3782206: P allele = 0.0124, P genotype = 0.0490), and almost these significances remained with an increased sample size (1154 cases and 1260 controls, rs3782219: P allele = 0.0197 and rs3782206: P allele = 0.0480). However, these associations also might have resulted from type I error on account of multiple testing (rs3782219: P allele = 0.133 and rs3782206: P allele = 0.168). In conclusion, we could not replicate the association between seven SNPs in NOS1 and schizophrenia found in several earlier studies, using larger Japanese schizophrenia and control samples.
SCZ Keywordsschizophrenia, schizophrenic
13Neuromolecular Med. 2009 -1 11: 123-7
PMID19513863
TitleNo association between polymorphisms of neuronal oxide synthase 1 gene (NOS1) and schizophrenia in a Japanese population.
AbstractThe neuronal nitric oxide synthase gene (NOS1) is located on 12q24, in a susceptibility region for schizophrenia, and produces nitric oxide (NO) in the brain. NO plays a role in neurotransmitter release and is the second messenger of the N-methyl-D-aspartate (NMDA) receptor. Furthermore, it is connected to the dopaminergic and serotonergic neural transmission systems. Therefore, abnormalities in the NO pathway are thought to be involved in the pathophysiology of schizophrenia. Several genetic studies showed an association of NOS1 with schizophrenia. However, results of replication studies have been inconsistent. Therefore, we conducted a replication study of NOS1 with schizophrenia in a Japanese sample. We selected seven SNPs (rs41279104, rs3782221, rs3782219, rs561712, rs3782206, rs2682826, and rs6490121) in NOS1 that were positively associated with schizophrenia in previous studies. Two SNPs showed an association with Japanese schizophrenic patients (542 cases and 519 controls, rs3782219: P allele = 0.0291 and rs3782206: P allele = 0.0124, P genotype = 0.0490), and almost these significances remained with an increased sample size (1154 cases and 1260 controls, rs3782219: P allele = 0.0197 and rs3782206: P allele = 0.0480). However, these associations also might have resulted from type I error on account of multiple testing (rs3782219: P allele = 0.133 and rs3782206: P allele = 0.168). In conclusion, we could not replicate the association between seven SNPs in NOS1 and schizophrenia found in several earlier studies, using larger Japanese schizophrenia and control samples.
SCZ Keywordsschizophrenia, schizophrenic
14Arch. Gen. Psychiatry 2010 Oct 67: 991-1001
PMID20921115
TitleBiological validation of increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis via functional neuroimaging in healthy controls.
AbstractNRG1 is a schizophrenia candidate gene and plays an important role in brain development and neural function. schizophrenia is a complex disorder, with etiology likely due to epistasis.
To examine epistasis between NRG1 and selected N-methyl-d-aspartate-glutamate pathway partners implicated in its effects, including ERBB4, AKT1, DLG4, NOS1, and NOS1AP.
schizophrenia case-control sample analyzed using machine learning algorithms and logistic regression with follow-up using neuroimaging on an independent sample of healthy controls.
A referred sample of schizophrenic patients (n = 296) meeting DSM-IV criteria for schizophrenia spectrum disorder and a volunteer sample of controls for case-control comparison (n = 365) and a separate volunteer sample of controls for neuroimaging (n = 172).
Epistatic association between single-nucleotide polymorphisms (SNPs) and case-control status; epistatic association between SNPs and the blood oxygen level-dependent physiological response during working memory measured by functional magnetic resonance imaging.
We observed interaction between NRG1 5' and 3' SNPs rs4560751 and rs3802160 (likelihood ratio test P = .00020) and schizophrenia, which was validated using functional magnetic resonance imaging of working memory in healthy controls; carriers of risk-associated genotypes showed inefficient processing in the dorsolateral prefrontal cortex (P = .015, familywise error corrected). We observed epistasis between NRG1 (rs10503929; Thr286/289/294Met) and its receptor ERBB4 (rs1026882; likelihood ratio test P = .035); a 3-way interaction with these 2 SNPs and AKT1 (rs2494734) was also observed (odds ratio, 27.13; 95% confidence interval, 3.30-223.03; likelihood ratio test P = .042). These same 2- and 3-way interactions were further biologically validated via functional magnetic resonance imaging: healthy individuals carrying risk genotypes for NRG1 and ERBB4, or these 2 together with AKT1, were disproportionately less efficient in dorsolateral prefrontal cortex processing. Lower-level interactions were not observed between NRG1 /ERBB4 and AKT1 in association or neuroimaging, consistent with biological evidence that NRG1 × ERBB4 interaction modulates downstream AKT1 signaling.
Our data suggest complex epistatic effects implicating an NRG1 molecular pathway in cognitive brain function and the pathogenesis of schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
15Arch. Gen. Psychiatry 2010 Oct 67: 991-1001
PMID20921115
TitleBiological validation of increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis via functional neuroimaging in healthy controls.
AbstractNRG1 is a schizophrenia candidate gene and plays an important role in brain development and neural function. schizophrenia is a complex disorder, with etiology likely due to epistasis.
To examine epistasis between NRG1 and selected N-methyl-d-aspartate-glutamate pathway partners implicated in its effects, including ERBB4, AKT1, DLG4, NOS1, and NOS1AP.
schizophrenia case-control sample analyzed using machine learning algorithms and logistic regression with follow-up using neuroimaging on an independent sample of healthy controls.
A referred sample of schizophrenic patients (n = 296) meeting DSM-IV criteria for schizophrenia spectrum disorder and a volunteer sample of controls for case-control comparison (n = 365) and a separate volunteer sample of controls for neuroimaging (n = 172).
Epistatic association between single-nucleotide polymorphisms (SNPs) and case-control status; epistatic association between SNPs and the blood oxygen level-dependent physiological response during working memory measured by functional magnetic resonance imaging.
We observed interaction between NRG1 5' and 3' SNPs rs4560751 and rs3802160 (likelihood ratio test P = .00020) and schizophrenia, which was validated using functional magnetic resonance imaging of working memory in healthy controls; carriers of risk-associated genotypes showed inefficient processing in the dorsolateral prefrontal cortex (P = .015, familywise error corrected). We observed epistasis between NRG1 (rs10503929; Thr286/289/294Met) and its receptor ERBB4 (rs1026882; likelihood ratio test P = .035); a 3-way interaction with these 2 SNPs and AKT1 (rs2494734) was also observed (odds ratio, 27.13; 95% confidence interval, 3.30-223.03; likelihood ratio test P = .042). These same 2- and 3-way interactions were further biologically validated via functional magnetic resonance imaging: healthy individuals carrying risk genotypes for NRG1 and ERBB4, or these 2 together with AKT1, were disproportionately less efficient in dorsolateral prefrontal cortex processing. Lower-level interactions were not observed between NRG1 /ERBB4 and AKT1 in association or neuroimaging, consistent with biological evidence that NRG1 × ERBB4 interaction modulates downstream AKT1 signaling.
Our data suggest complex epistatic effects implicating an NRG1 molecular pathway in cognitive brain function and the pathogenesis of schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
16Prog. Neuropsychopharmacol. Biol. Psychiatry 2010 Dec 34: 1375-80
PMID20600464
TitleGenetic findings in schizophrenia patients related to alterations in the intracellular Ca-homeostasis.
AbstractThere is a relatively high genetic heritability of schizophrenia as shown by family, twin and adoption studies. A large number of hypotheses on the causes of schizophrenia occurred over time. In this review we focus on genetic findings related to potential alterations of intracellular Ca-homeostasis in association with schizophrenia. First, we provide evidence for the NMDA/glutamatergic theory of schizophrenia including calcium processes. We mainly focus on genes including: DAO (D-amino acid oxidase), DAOA (D-amino acid oxidase activator), DTNBP1 (Dysbindin 1, dystrobrevin-binding protein 1), NRG1 (Neuregulin 1), ERBB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4, avian), NOS1 (nitric oxide synthase 1, neuronal) and NRGN (Neurogranin). Furthermore, a gene coding for a calcium channel subunit (CACNA1C: calcium channel, voltage-dependent, L type, alpha 1C subunit) is discussed in the light of schizophrenia whereas genetic findings related to alterations in the intracellular Ca-homeostasis associated specifically with dopaminergic and serotonergic neurotransmission in schizophrenia are not herein closer reviewed. Taken together there is converging evidence for the contribution of genes potentially related to alterations in intracellular Ca-homeostasis to the risk of schizophrenia. Replications and functional studies will hopefully provide further insight into these genetic variants and the underlying processes.
SCZ Keywordsschizophrenia, schizophrenic
17Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010 Oct 153B: 1318-28
PMID20645313
TitleGenetic analysis of nitric oxide synthase 1 variants in schizophrenia and bipolar disorder.
AbstractNitric oxide (NO) is a neurotransmitter that acts as a second messenger of the N-methyl-D-aspartate receptor and interacts with the dopaminergic and the serotonergic systems. NO involvement in pathological processes relevant to neuropsychiatric disorders stems from its ability to modulate certain forms of synaptic plasticity, and from its capacity to be transformed to a highly active free radical. Additionally, multiple links have been reported between the NO-producing enzyme, nitric oxide synthase (NOS) 1, and both schizophrenia and bipolar disorder (BPD). RNA and DNA isolated from dorsolateral-prefrontal cortices of schizophrenia patients, bipolar patients and controls (n?=?26, 30 and 29, respectively) were donated by the Stanley Foundation Brain Collection. Gene expression was measured by Real-Time-PCR. Genetic polymorphisms were genotyped by restriction-fragment length-polymorphism analysis, and by product-size determination of PCR products amplified with a fluorescent primer.Expression analysis of pan-NOS1, as well as of 2 of its isoforms, "NOS1_1d" and "NOS1_1f", which differ in their first exons and translational strength, revealed a trend for pan-NOS1 over-expression (P?=?0.075) in schizophrenia patients (1.33-fold), and significant over-expression (P?NOS1_1d and NOS1_1f in this group (1.54-fold and 1.61-fold, respectively). No expressional alteration was observed in BPD. Polymorphisms at the promoters of NOS1_1d and NOS1_1f, previously shown to be functional in vitro, revealed no significant allelic or genotypic differences among clinical groups and showed no effect on these transcripts' expression. In conclusion, understanding the molecular mechanisms underlying the over-expression of specific NOS1 isoforms, which is unique to schizophrenia, may assist in identifying targets for new drugs.
SCZ Keywordsschizophrenia, schizophrenic
18Schizophr. Res. 2010 Aug 121: 172-8
PMID20605417
TitleA putative cis-acting polymorphism in the NOS1 gene is associated with schizophrenia and NOS1 immunoreactivity in the postmortem brain.
Abstractschizophrenia is a devastating neurodevelopmental disorder whose genetic influences remain elusive. Recent genome-wide scans revealed that rare structural variants disrupted multiple genes in neurodevelopmental pathways, which strongly implicate nitric oxide (NO) signaling in schizophrenia. NO acts as a second messenger of N-methyl-D aspartate receptor activation, which further interacts with both dopaminergic and serotonergic pathways. NO is mainly synthesized by neuronal nitric oxide synthase (NOS1) in the brain, and its gene locus, 12q24.2, has attracted much attention as a major linkage region for schizophrenia. Genetic variations of NOS1 have also been associated with schizophrenia, and differential expression of NOS1 was observed in the postmortem brain of schizophrenic patients. Here, we explored the hypothesis that a putative cis-acting G-84A single nucleotide polymorphism (SNP; rs41279104) in the exon 1c promoter region of the NOS1 gene is associated with the levels of NOS1 immunoreactivity in postmortem prefrontal cortex specimens regardless of disease phenotype. Individuals with the A-allele of this SNP showed significantly lower levels of NOS1 immunoreactivity than did GG homozygotes (p=0.002). Furthermore, a case-control study using 720 individuals in a Japanese population revealed a significant association between the SNP and schizophrenia (genotypic p=0.0013 and allelic p=0.0011). Additionally, the average of onset age in schizophrenic patients with the A-allele was significantly earlier than GG homozygotes (p=0.018). When the analyses took gender into account, this significance was more significant for female. These findings provide further evidences that NOS1 is associated with a biological susceptibility gene to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
19Schizophr. Res. 2010 Aug 121: 172-8
PMID20605417
TitleA putative cis-acting polymorphism in the NOS1 gene is associated with schizophrenia and NOS1 immunoreactivity in the postmortem brain.
Abstractschizophrenia is a devastating neurodevelopmental disorder whose genetic influences remain elusive. Recent genome-wide scans revealed that rare structural variants disrupted multiple genes in neurodevelopmental pathways, which strongly implicate nitric oxide (NO) signaling in schizophrenia. NO acts as a second messenger of N-methyl-D aspartate receptor activation, which further interacts with both dopaminergic and serotonergic pathways. NO is mainly synthesized by neuronal nitric oxide synthase (NOS1) in the brain, and its gene locus, 12q24.2, has attracted much attention as a major linkage region for schizophrenia. Genetic variations of NOS1 have also been associated with schizophrenia, and differential expression of NOS1 was observed in the postmortem brain of schizophrenic patients. Here, we explored the hypothesis that a putative cis-acting G-84A single nucleotide polymorphism (SNP; rs41279104) in the exon 1c promoter region of the NOS1 gene is associated with the levels of NOS1 immunoreactivity in postmortem prefrontal cortex specimens regardless of disease phenotype. Individuals with the A-allele of this SNP showed significantly lower levels of NOS1 immunoreactivity than did GG homozygotes (p=0.002). Furthermore, a case-control study using 720 individuals in a Japanese population revealed a significant association between the SNP and schizophrenia (genotypic p=0.0013 and allelic p=0.0011). Additionally, the average of onset age in schizophrenic patients with the A-allele was significantly earlier than GG homozygotes (p=0.018). When the analyses took gender into account, this significance was more significant for female. These findings provide further evidences that NOS1 is associated with a biological susceptibility gene to schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
20Mol. Psychiatry 2010 Jan 15: 29-37
PMID19844207
TitleReplication of association between schizophrenia and ZNF804A in the Irish Case-Control Study of Schizophrenia sample.
AbstractA recent genome-wide association study reported association between schizophrenia and the ZNF804A gene on chromosome 2q32.1. We attempted to replicate these findings in our Irish Case-Control Study of schizophrenia (ICCSS) sample (N=1021 cases, 626 controls). Following consultation with the original investigators, we genotyped three of the most promising single-nucleotide polymorphisms (SNPs) from the Cardiff study. We replicate association with rs1344706 (trend test one-tailed P=0.0113 with the previously associated A allele) in ZNF804A. We detect no evidence of association with rs6490121 in NOS1 (one-tailed P=0.21), and only a trend with rs9922369 in RGRIP1L (one-tailed P=0.0515). On the basis of these results, we completed genotyping of 11 additional linkage disequilibrium-tagging SNPs in ZNF804A. Of 12 SNPs genotyped, 11 pass quality control criteria and 4 are nominally associated, with our most significant evidence of association at rs7597593 (P=0.0013) followed by rs1344706. We observe no evidence of differential association in ZNF804A on the basis of family history or sex of case. The associated SNP rs1344706 lies in approximately 30 bp of conserved mammalian sequence, and the associated A allele is predicted to maintain binding sites for the brain-expressed transcription factors MYT1l and POU3F1/OCT-6. In controls, expression is significantly increased from the A allele of rs1344706 compared with the C allele. Expression is increased in schizophrenic cases compared with controls, but this difference does not achieve statistical significance. This study replicates the original reported association of ZNF804A with schizophrenia and suggests that there is a consistent link between the A allele of rs1344706, increased expression of ZNF804A and risk for schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
21Mol. Psychiatry 2010 Jan 15: 29-37
PMID19844207
TitleReplication of association between schizophrenia and ZNF804A in the Irish Case-Control Study of Schizophrenia sample.
AbstractA recent genome-wide association study reported association between schizophrenia and the ZNF804A gene on chromosome 2q32.1. We attempted to replicate these findings in our Irish Case-Control Study of schizophrenia (ICCSS) sample (N=1021 cases, 626 controls). Following consultation with the original investigators, we genotyped three of the most promising single-nucleotide polymorphisms (SNPs) from the Cardiff study. We replicate association with rs1344706 (trend test one-tailed P=0.0113 with the previously associated A allele) in ZNF804A. We detect no evidence of association with rs6490121 in NOS1 (one-tailed P=0.21), and only a trend with rs9922369 in RGRIP1L (one-tailed P=0.0515). On the basis of these results, we completed genotyping of 11 additional linkage disequilibrium-tagging SNPs in ZNF804A. Of 12 SNPs genotyped, 11 pass quality control criteria and 4 are nominally associated, with our most significant evidence of association at rs7597593 (P=0.0013) followed by rs1344706. We observe no evidence of differential association in ZNF804A on the basis of family history or sex of case. The associated SNP rs1344706 lies in approximately 30 bp of conserved mammalian sequence, and the associated A allele is predicted to maintain binding sites for the brain-expressed transcription factors MYT1l and POU3F1/OCT-6. In controls, expression is significantly increased from the A allele of rs1344706 compared with the C allele. Expression is increased in schizophrenic cases compared with controls, but this difference does not achieve statistical significance. This study replicates the original reported association of ZNF804A with schizophrenia and suggests that there is a consistent link between the A allele of rs1344706, increased expression of ZNF804A and risk for schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
22Int. J. Dev. Neurosci. 2011 May 29: 325-34
PMID20691252
TitleWhite matter neuron alterations in schizophrenia and related disorders.
AbstractIncreased density and altered spatial distribution of subcortical white matter neurons (WMNs) represents one of the more well replicated cellular alterations found in schizophrenia and related disease. In many of the affected cases, the underlying genetic risk architecture for these WMN abnormalities remains unknown. Increased density of neurons immunoreactive for Microtubule-Associated Protein 2 (MAP2) and Neuronal Nuclear Antigen (NeuN) have been reported by independent studies, though there are negative reports as well; additionally, group differences in some of the studies appear to be driven by a small subset of cases. Alterations in markers for inhibitory (GABAergic) neurons have also been described. For example, downregulation of neuropeptide Y (NPY) and nitric oxide synthase (NOS1) in inhibitory WMN positioned at the gray/white matter border, as well as altered spatial distribution, have been reported. While increased density of WMN has been suggested to reflect disturbance of neurodevelopmental processes, including neuronal migration, neurogenesis, and cell death, alternative hypotheses--such as an adaptive response to microglial activation in mature CNS, as has been described in multiple sclerosis--should also be considered. We argue that larger scale studies involving hundreds of postmortem specimens will be necessary in order to clearly establish the subset of subjects affected. Additionally, these larger cohorts could make it feasible to connect the cellular pathology to environmental and genetic factors implicated in schizophrenia, bipolar disorder, and autism. These could include the 22q11 deletion (Velocardiofacial/DiGeorge) syndrome, which in some cases is associated with neuronal ectopias in white matter.
SCZ Keywordsschizophrenia, schizophrenic
23Curr Neuropharmacol 2011 Mar 9: 155-9
PMID21886582
TitleGenetic Association Analysis of NOS1 and Methamphetamine-Induced Psychosis Among Japanese.
AbstractThe neuronal nitric oxide synthase gene (NOS1) is located at 12q24, a susceptibility region for schizophrenia, and produces nitric oxide (NO). NO has been reported to play important roles as a gaseous neurotransmitter in brain. NO is a second messenger for the N-methyl-D aspartate (NMDA) receptor and is related to the dopaminergic system. Because the symptomatology of methamphetamine (METH) use disorder patients with psychosis is similar to that of patients with schizophrenia, NOS1 is a good candidate gene for METH-induced psychosis. Therefore, we conducted a case-control association study between NOS1 and METH-induced psychosis with Japanese subjects (183 with METH-induced psychosis patients and 519 controls). We selected seven SNPs (rs41279104, rs3782221, rs3782219, rs561712, rs3782206, rs6490121, rs2682826) in NOS1 from previous reports. Written informed consent was obtained from each subject. This study was approved by the Ethics Committee at Fujita Health University School of Medicine and each participating institute of the Japanese Genetics Initiative for Drug Abuse (JGIDA). No significant association was found between NOS1 and METH-induced psychosis in the allele/genotype-wise or haplotype-wise analyses. In conclusion, we suggest that NOS1 might not contribute to the risk of METH-induced psychosis in the Japanese population.
SCZ Keywordsschizophrenia, schizophrenic
24Neuroimage 2011 Aug 57: 1617-23
PMID21620982
TitleNOS1 ex1f-VNTR polymorphism influences prefrontal brain oxygenation during a working memory task.
AbstractNitric oxide (NO) synthase produces NO, which serves as first and second messenger in neurons, where the protein is encoded by the NOS1 gene. A functional variable number of tandem repeats (VNTR) polymorphism in the promoter region of the alternative first exon 1f of NOS1 is associated with various functions of human behavior, for example increased impulsivity, while another, non-functional variant was linked to decreased verbal working memory and a heightened risk for schizophrenia. We therefore investigated the influence of NOS1 ex 1f-VNTR on working memory function as reflected by both behavioral measures and prefrontal oxygenation. We hypothesized that homozygous short allele carriers exhibit altered brain oxygenation in task-related areas, namely the dorsolateral and ventrolateral prefrontal cortex and the parietal cortex. To this end, 56 healthy subjects were stratified into a homozygous long allele group and a homozygous short allele group comparable for age, sex and intelligence. All subjects completed a letter n-back task (one-, two-, and three-back), while concentration changes of oxygenated (O(2)Hb) hemoglobin in the prefrontal cortex were measured with functional near-infrared spectroscopy (fNIRS). We found load-associated O(2)Hb increases in the prefrontal and parts of the parietal cortex. Significant load-associated oxygenation differences between the two genotype groups could be shown for the dorsolateral prefrontal cortex and the parietal cortex. Specifically, short allele carriers showed a significantly larger increase in oxygenation in all three n-back tasks. This suggests a potential compensatory mechanism, with task-related brain regions being more active in short allele carriers to compensate for reduced NOS1 expression.
SCZ Keywordsschizophrenia, schizophrenic
25Int. J. Neuropsychopharmacol. 2011 Aug 14: 887-97
PMID21281558
TitleA functional promoter polymorphism of neuronal nitric oxide synthase moderates prefrontal functioning in schizophrenia.
AbstractCognitive deficits in tasks involving the prefrontal cortex such as working memory or verbal fluency are a key component of schizophrenia. This led to the hypofrontality hypothesis of schizophrenia, which is widely accepted even though molecular underpinnings are elusive. While disturbances of glutamatergic neurotransmission might play a role, other components have rarely been investigated. Recently, the promoter region of nitric oxide (NO) synthase-I (NOS-I, encoded by the gene NOS1), impacting on prefrontal glutamate transmission, has repeatedly been associated with schizophrenia. We thus tested whether an associated schizophrenia risk variant (rs41279104), leading to reduced expression of the transcript, influences prefrontal brain functioning. Forty-three patients suffering from chronic schizophrenia and 44 controls were genotyped for NOS1 rs41279104 and investigated by means of functional near-infrared spectroscopy (fNIRS), while completing a working-memory task (2-back test) and a verbal fluency test (VFT). After matching for genotype, behavioural and brain activation data of 26 patients and 28 comparable controls were correlated to rs41279104. Healthy controls showed significant activation of large parts of the lateral prefrontal cortex during both tasks, whereas task-related changes in oxygenation were significantly reduced in patients. schizophrenia patients also performed worse in both tasks. The NOS1 schizophrenia risk genotype rs41279104 AA/AG was associated with slower reaction time in the 2-back task, as well as with reduced right-hemispheric activation of the frontal cortex for VFT in patients only. Our fNIRS data extend previous studies suggesting disturbed prefrontal functioning in schizophrenia and suggest that genetic variation of NOS1 has a role in cognitive dysfunction, probably by mediating glutamatergic tone.
SCZ Keywordsschizophrenia, schizophrenic
26Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2012 Aug 29: 459-63
PMID22875507
Title[Association study of NOS1 gene polymorphisms and schizophrenia].
AbstractTo assess the association between nitric oxide synthase 1 (NOS1) gene polymorphisms and schizophrenia.
Twenty eight tag single nucleotide polymorphisms (SNPs) of NOS1 in 382 schizophrenic patients and 448 healthy individuals sampled from Chinese Han population were analyzed by a Illumina GoldenGate Genotyping Assay.
One SNP (rs1520811) was found to be associated with schizophrenia, which however becomes negative after Bonferroni correction (P>0.05). Further analysis has failed to identify any association between particular haplotypes and the disease.
Our results did not support a significant association between NOS1 gene polymorphisms and schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
27Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2012 Aug 29: 459-63
PMID22875507
Title[Association study of NOS1 gene polymorphisms and schizophrenia].
AbstractTo assess the association between nitric oxide synthase 1 (NOS1) gene polymorphisms and schizophrenia.
Twenty eight tag single nucleotide polymorphisms (SNPs) of NOS1 in 382 schizophrenic patients and 448 healthy individuals sampled from Chinese Han population were analyzed by a Illumina GoldenGate Genotyping Assay.
One SNP (rs1520811) was found to be associated with schizophrenia, which however becomes negative after Bonferroni correction (P>0.05). Further analysis has failed to identify any association between particular haplotypes and the disease.
Our results did not support a significant association between NOS1 gene polymorphisms and schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
28Neuroimage 2012 Mar 60: 614-22
PMID22227051
TitleThe NOS1 variant rs6490121 is associated with variation in prefrontal function and grey matter density in healthy individuals.
AbstractA common polymorphism within the nitric oxide sythanse-1 (NOS1) gene (rs6490121), initially identified as risk variant for schizophrenia, has been associated with variation in working memory and IQ. Here we investigated how this variation might be mediated at the level of brain structure and function. In healthy individuals (N=157), voxel based morphometry was used to compare grey matter (GM) volume between homozygous and heterozygous carriers of the 'G' allele (i.e. the allele associated with impaired cognition and schizophrenia risk) and homozygous carriers of the non-risk 'A' allele. Functional brain imaging data were also acquired from 48 participants during performance of a spatial working memory (SWM) task, and analysed to determine any effect of NOS1 risk status. An a priori region-of-interest analysis identified a significant reduction in ventromedial prefrontal GM volume in 'G' allele carriers. Risk carriers also exhibited altered patterns of activation in the prefrontal cortex, caudate, and superior parietal lobe, which were characteristic of abnormal increases in activation in frontoparietal working memory networks and a failure to disengage regions of the default mode network. These functional changes suggest a NOS1-mediated processing inefficiency, which may contribute to cognitive dysfunction in schizophrenia. While the mechanisms by which NOS1 may influence brain structure and/or function have not yet been well delineated, these data provide further evidence for a role of NOS1 in risk for schizophrenia via an impact upon cognitive function.
SCZ Keywordsschizophrenia, schizophrenic
29Hum Brain Mapp 2012 May 33: 1202-11
PMID21520349
TitleA NOS1 variant implicated in cognitive performance influences evoked neural responses during a high density EEG study of early visual perception.
AbstractThe nitric oxide synthasase-1 gene (NOS1) has been implicated in mental disorders including schizophrenia and variation in cognition. The NOS1 variant rs6490121 identified in a genome wide association study of schizophrenia has recently been associated with variation in general intelligence and working memory in both patients and healthy participants. Whether this variant is also associated with variation in early sensory processing remains unclear.
We investigated differences in the P1 visual evoked potential in a high density EEG study of 54 healthy participants. Given both NOS1's association with cognition and recent evidence that cognitive performance and P1 response are correlated, we investigated whether NOS1's effect on P1 response was independent of its effects on cognition using CANTAB's spatial working memory (SWM) task.
We found that carriers of the previously identified risk "G" allele showed significantly lower P1 responses than non-carriers. We also found that while P1 response and SWM performance were correlated, NOS1 continued to explain a significant proportion of variation in P1 response even when its effects on cognition were accounted for.
The schizophrenia implicated NOS1 variants rs6490121 influences visual sensory processing as measured by the P1 response, either as part of the gene's pleiotropic effects on multiple aspects of brain function, or because of a primary influence on sensory processing that mediates the effects already seen in higher cognitive processes.
SCZ Keywordsschizophrenia, schizophrenic
30Transl Psychiatry 2014 -1 4: e339
PMID24399042
TitleGenome-wide DNA methylation analysis of human brain tissue from schizophrenia patients.
AbstractRecent studies suggest that genetic and environmental factors do not account for all the schizophrenia risk, and epigenetics also has a role in disease susceptibility. DNA methylation is a heritable epigenetic modification that can regulate gene expression. Genome-wide DNA methylation analysis was performed on post-mortem human brain tissue from 24 patients with schizophrenia and 24 unaffected controls. DNA methylation was assessed at over 485,000 CpG sites using the Illumina Infinium HumanMethylation450 Bead Chip. After adjusting for age and post-mortem interval, 4641 probes corresponding to 2929 unique genes were found to be differentially methylated. Of those genes, 1291 were located in a CpG island and 817 were in a promoter region. These include NOS1, AKT1, DTNBP1, DNMT1, PPP3CC and SOX10, which have previously been associated with schizophrenia. More than 100 of these genes overlap with a previous DNA methylation study of peripheral blood from schizophrenia patients in which 27,000 CpG sites were analysed. Unsupervised clustering analysis of the top 3000 most variable probes revealed two distinct groups with significantly more people with schizophrenia in cluster one compared with controls (P=1.74 × 10(-4)). The first cluster composed of 88% of patients with schizophrenia and only 12% controls, whereas the second cluster composed of 27% of patients with schizophrenia and 73% controls. These results strongly suggest that differential DNA methylation is important in schizophrenia etiology and add support for the use of DNA methylation profiles as a future prognostic indicator of schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
31Front Genet 2014 -1 5: 239
PMID25101118
TitleDysregulated nitric oxide signaling as a candidate mechanism of fragile X syndrome and other neuropsychiatric disorders.
AbstractA mechanistic understanding of the pathophysiology underpinning psychiatric disorders is essential for the development of targeted molecular therapies. For fragile X syndrome (FXS), recent mechanistic studies have been focused on the metabotropic glutamate receptor (mGluR) signaling pathway. This line of research has led to the discovery of promising candidate drugs currently undergoing various phases of clinical trial, and represents a model of how biological insights can inform therapeutic strategies in neurodevelopmental disorders. Although mGluR signaling is a key mechanism at which targeted treatments can be directed, it is likely to be one of many mechanisms contributing to FXS. A more complete understanding of the molecular and neural underpinnings of the disorder is expected to inform additional therapeutic strategies. Alterations in the assembly of neural circuits in the neocortex have been recently implicated in genetic studies of autism and schizophrenia, and may also contribute to FXS. In this review, we explore dysregulated nitric oxide signaling in the developing neocortex as a novel candidate mechanism of FXS. This possibility stems from our previous work demonstrating that neuronal nitric oxide synthase 1 (NOS1 or nNOS) is regulated by the FXS protein FMRP in the mid-fetal human neocortex. Remarkably, in the mid-late fetal and early postnatal neocortex of human FXS patients, NOS1 expression is severely diminished. Given the role of nitric oxide in diverse neural processes, including synaptic development and plasticity, the loss of NOS1 in FXS may contribute to the etiology of the disorder. Here, we outline the genetic and neurobiological data that implicate neocortical dysfunction in FXS, review the evidence supporting dysregulated nitric oxide signaling in the developing FXS neocortex and its contribution to the disorder, and discuss the implications for targeting nitric oxide signaling in the treatment of FXS and other psychiatric illnesses.
SCZ Keywordsschizophrenia, schizophrenic
32Eur Neuropsychopharmacol 2014 Jan 24: 65-85
PMID24220657
TitleThe genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia: further evidence and meta-analysis.
AbstractNO is a pleiotropic signaling molecule and has an important role in cognition and emotion. In the brain, NO is produced by neuronal nitric oxide synthase (NOS-I, encoded by NOS1) coupled to the NMDA receptor via PDZ interactions; this protein-protein interaction is disrupted upon binding of NOS1 adapter protein (encoded by NOS1AP) to NOS-I. As both NOS1 and NOS1AP were associated with schizophrenia, we here investigated these genes in greater detail by genotyping new samples and conducting a meta-analysis of our own and published data. In doing so, we confirmed association of both genes with schizophrenia and found evidence for their interaction in increasing risk towards disease. Our strongest finding was the NOS1 promoter SNP rs41279104, yielding an odds ratio of 1.29 in the meta-analysis. As findings from heterologous cell systems have suggested that the risk allele decreases gene expression, we studied the effect of the variant on NOS1 expression in human post-mortem brain samples and found that the risk allele significantly decreases expression of NOS1 in the prefrontal cortex. Bioinformatic analyses suggest that this might be due the replacement of six transcription factor binding sites by two new binding sites as a consequence of proxy SNPs. Taken together, our data argue that genetic variance in NOS1 resulting in lower prefrontal brain expression of this gene contributes to schizophrenia liability, and that NOS1 interacts with NOS1AP in doing so. The NOS1-NOS1AP PDZ interface may thus well constitute a novel target for small molecules in at least some forms of schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
33Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015 Dec 168: 678-86
PMID26440917
TitleGenome-wide significant linkage of schizophrenia-related neuroanatomical trait to 12q24.
AbstractThe insula and medial prefrontal cortex (mPFC) share functional, histological, transcriptional, and developmental characteristics, and they serve higher cognitive functions of theoretical relevance to schizophrenia and related disorders. Meta-analyses and multivariate analysis of structural magnetic resonance imaging (MRI) scans indicate that gray matter density and volume reductions in schizophrenia are the most consistent and pronounced in a network primarily composed of the insula and mPFC. We used source-based morphometry, a multivariate technique optimized for structural MRI, in a large sample of randomly ascertained pedigrees (N?=?887) to derive an insula-mPFC component and to investigate its genetic determinants. Firstly, we replicated the insula-mPFC gray matter component as an independent source of gray matter variation in the general population, and verified its relevance to schizophrenia in an independent case-control sample. Secondly, we showed that the neuroanatomical variation defined by this component is largely determined by additive genetic variation (h(2) ?=?0.59), and genome-wide linkage analysis resulted in a significant linkage peak at 12q24 (LOD?=?3.76). This region has been of significant interest to psychiatric genetics as it contains the Darier's disease locus and other proposed susceptibility genes (e.g., DAO, NOS1), and it has been linked to affective disorders and schizophrenia in multiple populations. Thus, in conjunction with previous clinical studies, our data imply that one or more psychiatric risk variants at 12q24 are co-inherited with reductions in mPFC and insula gray matter concentration. © 2015 Wiley Periodicals, Inc.
SCZ Keywordsschizophrenia, schizophrenic
34J. Neurosci. 2015 May 35: 7349-64
PMID25972165
TitleUnexpected Heterodivalent Recruitment of NOS1AP to nNOS Reveals Multiple Sites for Pharmacological Intervention in Neuronal Disease Models.
AbstractThe protein NOS1AP/CAPON mediates signaling from a protein complex of NMDA receptor, PSD95 and nNOS. The only stroke trial for neuroprotectants that showed benefit to patients targeted this ternary complex. NOS1AP/nNOS interaction regulates small GTPases, iron transport, p38MAPK-linked excitotoxicity, and anxiety. Moreover, the NOS1ap gene is linked to disorders from schizophrenia, post-traumatic stress disorder, and autism to cardiovascular disorders and breast cancer. Understanding protein interactions required for NOS1AP function, therefore, has broad implications for numerous diseases. Here we show that the interaction of NOS1AP with nNOS differs radically from the classical PDZ docking assumed to be responsible. The NOS1AP PDZ motif does not bind nNOS as measured by multiple methods. In contrast, full-length NOS1AP forms an unusually stable interaction with nNOS. We mapped the discrepancy between full-length and C-terminal PDZ motif to a novel internal region we call the ExF motif. The C-terminal PDZ motif, although neither sufficient nor necessary for binding, nevertheless promotes the stability of the complex. It therefore potentially affects signal transduction and suggests that functional interaction of nNOS with NOS1AP might be targetable at two distinct sites. We demonstrate that excitotoxic pathways can be regulated, in cortical neuron and organotypic hippocampal slice cultures from rat, either by the previously described PDZ ligand TAT-GESV or by the ExF motif-bearing region of NOS1AP, even when lacking the critical PDZ residues as long as the ExF motif is intact and not mutated. This previously unrecognized heterodivalent interaction of nNOS with NOS1AP may therefore provide distinct opportunities for pharmacological intervention in NOS1AP-dependent signaling and excitotoxicity.
SCZ Keywordsschizophrenia, schizophrenic
35Genes Brain Behav. 2015 Jan 14: 46-63
PMID25612209
TitleNeuronal nitric oxide synthase (NOS1) and its adaptor, NOS1AP, as a genetic risk factors for psychiatric disorders.
AbstractNitric oxide (NO) is a gaseous transmitter produced by nitric oxide synthases (NOSs). The neuronal isoform (NOS-I, encoded by NOS1) is the main source of NO in the central nervous system (CNS). Animal studies suggest that nitrinergic dysregulation may lead to behavioral abnormalities. Unfortunately, the large number of animal studies is not adequately reflected by publications concerning humans. These include post-mortem studies, determination of biomarkers, and genetic association studies. Here, we review the evidence for the role of NO in psychiatric disorders by focusing on the human NOS1 gene as well as biomarker studies. Owing to the complex regulation of NOS1 and the varying function of NOS-I in different brain regions, no simple, unidirectional association is expected. Rather, the 'where, when and how much' of NO formation is decisive. Present data, although still preliminary and partially conflicting, suggest that genetically driven reduced NO signaling in the prefrontal cortex is associated with schizophrenia and cognition. Both NOS1 and its interaction partner NOS1AP have a role therein. Also, reduced NOS1 expression in the striatum determined by a length polymorphism in a NOS1 promoter (NOS1 ex1f-VNTR) goes along with a variety of impulsive behaviors. An association of NOS1 with mood disorders, suggested by animal models, is less clear on the genetic level; however, NO metabolites in blood may serve as biomarkers for major depression and bipolar disorder. As the nitrinergic system comprises a relevant target for pharmacological interventions, further studies are warranted not only to elucidate the pathophysiology of mental disorders, but also to evaluate NO function as a biomarker.
SCZ Keywordsschizophrenia, schizophrenic
36Neuropsychopharmacology 2015 May 40: 1383-94
PMID25490993
TitleEvidence for the contribution of NOS1 gene polymorphism (rs3782206) to prefrontal function in schizophrenia patients and healthy controls.
AbstractNitric oxide (NO), a gaseous neurotransmitter, has been implicated in the pathogenesis of schizophrenia. Accordingly, several polymorphisms of the gene that codes for the main NO-producing enzyme, the nitric oxide synthase 1 (NOS1), have been found to convey a risk for schizophrenia. This study examined the role of NOS1 gene polymorphisms in cognitive functions and related neural mechanism. First, with a sample of 580 schizophrenia patients and 720 healthy controls, we found that rs3782206 genotype had main effects on the 1-back task (P=0.005), the 2-back task (P=0.049), the AY condition of the dot-pattern expectancy (DPX) task (P=0.001), and the conflict effect of the attention network (ANT) test (P<0.001 for RT differences and P=0.002 for RT ratio) and interaction effects with diagnosis on the BX condition of the DPX (P=0.009), the AY condition of the DPX (P<0.001), and the Stroop conflict effect (P=0.003 for RT differences and P=0.038 for RT ratio). Simple effect analyses further showed that the schizophrenia risk allele (T) of rs3782206 was associated with poorer performance in five measures for the patients (1-back, P=0.025; BX, P=0.017; AY, P<0.001; ANT conflict effect (RT differences), P=0.005; Stroop conflict effect (RT differences), P=0.019) and three measures for the controls ( for the 2-back task, P=0.042; for the ANT conlict effect (RT differences), P=0.013; for the ANT conflict effect (RT ratios), P=0.028). Then, with a separate sample of 78 healthy controls, we examined the association between rs3782206 and brain activation patterns during the N-back task and the Stroop task. Whole brain analyses found that the risk allele carriers showed reduced activation at the right inferior frontal gyrus (IFG) during both tasks. Finally, we examined functional connectivity seeded from the right IFG to the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex under three conditions (the N-back task, the Stroop task, and the resting state). Results showed reduced connectivity with the DLPFC for the risk allele carriers mainly in the Stroop task and the resting state. Taken together, results of this study strongly suggested a link between NOS1 gene polymorphism at rs3782206 and cognitive functions and their neural underpinnings at the IFG. These results have important implications for our understanding of the neural mechanism underlying the association between NOS1 gene polymorphism and schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
37Brain Res. Bull. 2016 May -1: -1
PMID27237129
TitleResearch progress in NOS1AP in neurological and psychiatric diseases.
AbstractNitric Oxide Synthase 1 Adaptor Protein (NOS1AP, previously named CAPON) was firstly identified in rat brain in 1998. Structurally, NOS1AP consists of a phosphotyrosine-binding (PTB) domain at its N-terminal and a PDZ (PSD-95/discs-large/ZO-1) ligand motif at its C-terminal. The PTB domain of NOS1AP mediates the interactions with Dexras1, scribble, and synapsins. The PDZ ligand motif of NOS1AP binds to the PDZ domain of NOS1, the enzyme responsible for nitric oxide synthesis in the nervous system. NOS1AP is implicated in Dexras1 activation, neuronal nitric oxide production, Hippo pathway signaling, and dendritic development through the association with these important partners. An increasing body of evidence is pointing to the significant roles of NOS1AP in excitotoxic neuronal damage, traumatic nervous system injury, bipolar disorder, and schizophrenia. However, the study progress in NOS1AP in neurological or psychiatric diseases, has not been systematically reviewed. Here we introduce the expression, structure, and isoforms of NOS1AP, then summarize the physiological roles of NOS1AP, and discuss the relationships between NOS1AP alterations and the pathophysiology of some neurological and psychiatric disorders. The review will promote the further investigation of NOS1AP in brain disorders and the development of drugs targeting the NOS1AP PTB domain or PDZ-binding motif in the future.
SCZ Keywordsschizophrenia, schizophrenic
38Mol. Neurobiol. 2016 Apr 53: 2065-81
PMID25902861
TitleHippocampal Pruning as a New Theory of Schizophrenia Etiopathogenesis.
AbstractPruning in neurons has been suggested to be strongly involved in schizophrenia's (SKZ) etiopathogenesis in recent biological, imaging, and genetic studies. We investigated the impact of protein-coding genes known to be involved in pruning, collected by a systematic literature research, in shaping the risk for SKZ in a case-control sample of 9,490 subjects (Psychiatric Genomics Consortium). Moreover, their modifications through evolution (humans, chimpanzees, and rats) and subcellular localization (as indicative of their biological function) were also investigated. We also performed a biological pathways (Gene Ontology) analysis. Genetics analyses found four genes (DLG1, NOS1, THBS4, and FADS1) and 17 pathways strongly involved in pruning and SKZ in previous literature findings to be significantly associated with the sample under analysis. The analysis of the subcellular localization found that secreted genes, and so regulatory ones, are the least conserved through evolution and also the most associated with SKZ. Their cell line and regional brain expression analysis found that their areas of primary expression are neuropil and the hippocampus, respectively. At the best of our knowledge, for the first time, we were able to describe the SKZ neurodevelopmental hypothesis starting from a single biological process. We can also hypothesize how alterations in pruning fine regulation and orchestration, strongly related with the evolutionary newest (and so more sensitive) secreted proteins, may be of particular relevance in the hippocampus. This early alteration may lead to a mis-structuration of neural connectivity, resulting in the different brain alteration that characterizes SKZ patients.
SCZ Keywordsschizophrenia, schizophrenic
39Eur Neuropsychopharmacol 2016 Apr 26: 741-755
PMID26861996
TitleInteraction of NOS1AP with the NOS-I PDZ domain: Implications for schizophrenia-related alterations in dendritic morphology.
Abstractschizophrenia involves morphological brain changes, including changes in synaptic plasticity and altered dendritic development. Amongst the most promising candidate molecules for schizophrenia are neuronal nitric oxide (NO) synthase (NOS-I, also known as nNOS) and its adapter protein NOS1AP (previously named CAPON). However, the precise molecular mechanisms by which NOS-I and NOS1AP affect disease pathology remain to be resolved. Interestingly, overexpression of NOS1AP affects dendritic morphology, possibly through increased association with the NOS-I PDZ domain. To investigate the effect of NOS1AP on dendritic morphology we overexpressed different NOS1AP isoforms, NOS1AP deletion mutants and the aminoterminal 133 amino acids of NOS-I (NOS-IN133) containing an extended PDZ domain. We examined the interaction of the overexpressed constructs with endogenous NOS-I by co-immunoprecipitation and the consequences of increased NOS-I/NOS1AP PDZ interaction in primary cultures of hippocampal and cortical neurons from C57BL/6J mice. Neurons overexpressing NOS1AP isoforms or deletion mutants showed highly altered spine morphology and excessive growth of filopodia-like protrusions. Sholl analysis of immunostained primary cultured neurons revealed that dendritic branching was mildly affected by NOS1AP overexpression. Our results hint towards an involvement of NOS-I/NOS1AP interaction in the regulation of dendritic spine plasticity. As altered dendritic spine development and filopodial outgrowth are important neuropathological features of schizophrenia, our findings may provide insight into part of the molecular mechanisms involved in brain morphology alterations observed in schizophrenia. As the NOS-I/NOS1AP interface can be targeted by small molecules, our findings ultimately might help to develop novel treatment strategies for schizophrenia patients.
SCZ Keywordsschizophrenia, schizophrenic