1Proc. Natl. Acad. Sci. U.S.A. 2004 Sep 101: 13648-53
PMID15347806
TitleBehavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors.
AbstractLaboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis.
SCZ Keywordsschizophrenia
2Proc. Natl. Acad. Sci. U.S.A. 2005 Sep 102: 14052-7
PMID16172381
TitleThe neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice.
AbstractThe neuronal PAS domain protein 3 (NPAS3) gene encoding a brain-enriched transcription factor was recently found to be disrupted in a family suffering from schizophrenia. Mice harboring compound disruptions in the NPAS3 and related NPAS1 genes manifest behavioral and neuroanatomical abnormalities reminiscent of schizophrenia. Herein we demonstrate that Npas3-/- mice are deficient in expression of hippocampal FGF receptor subtype 1 mRNA, most notably in the dentate gyrus. In vivo BrdUrd-labeling shows that basal neural precursor cell proliferation in the dentate gyrus of Npas3-/- mice is reduced by 84% relative to wild-type littermates. We propose that a deficiency in adult neurogenesis may cause the behavioral and neuroanatomical abnormalities seen in Npas3-/- mice, and we speculate that impaired neurogenesis may be involved in the pathophysiology of schizophrenia.
SCZ Keywordsschizophrenia
3J. Neurosci. Res. 2007 Jun 85: 1762-73
PMID17457889
TitleNeuronal PAS domain protein 1 regulates tyrosine hydroxylase level in dopaminergic neurons.
AbstractCatecholamines (dopamine, norepinephrine, and epinephrine) are all synthesized from a common pathway in which tyrosine hydroxylase (TH) is the rate-limiting enzyme. Dopamine is the main neurotransmitter present in dopaminergic neurons of the ventral midbrain, where dysfunction of these neurons can lead to Parkinson's disease and schizophrenia. Neuronal PAS domain protein 1 (NPAS1) was identified as one of the genes up-regulated during dopaminergic MN9D cell differentiation. We found that there was a corresponding decrease in TH level during MN9D differentiation. Overexpression and siRNA experiments revealed that NPAS1, in concert with ARNT, negatively regulates the expression of TH and that this regulation is mediated by a direct binding of NPAS1 on the TH promoter. Expression studies also confirmed a decrease in TH level in the ventral midbrain during mouse development, concomitant with an increase in NPAS1 level. These results suggest that NPAS1 plays a novel and important role in regulating TH level of dopaminergic neurons in the ventral midbrain during development.
SCZ Keywordsschizophrenia