1J. Psychopharmacol. (Oxford) 2012 Mar 26: 374-9
TitleRelaxin polymorphisms associated with metabolic disturbance in patients treated with antipsychotics.
AbstractPeople with schizophrenia have an increased risk of metabolic syndrome, with consequent elevated morbidity and mortality, largely due to cardiovascular disease. Metabolic disorders comprise obesity, dyslipidemia and elevated levels of triglycerides, hypertension, and disturbed insulin and glucose metabolism. The elevated risk of metabolic syndrome in individuals suffering from schizophrenia is believed to be multifactorial, related to a genetic predisposition, lifestyle characteristics and treatment with antipsychotic medications. Relaxin 3 (RLN3, also known as INSL7) is a recently identified member of the insulin/relaxin superfamily that plays a role in the regulation of appetite and body weight control. RLN3 stimulates relaxin-3 receptor 1 (relaxin/insulin-like family peptide receptor 3, RXFP3) and relaxin receptor 2 (relaxin/insulin-like family peptide receptor 4, RXFP4). We have investigated the role of ten polymorphisms in these genes (RLN3 rs12327666, rs1982632, and rs7249702, RLN3R1 rs42868, rs6861957, rs7702361, and rs35399, and RLN3R2 rs11264422, rs1018730 and rs12124383) in the occurrence of metabolic syndrome phenotypes (obesity, diabetes, hypercholesterolemia, hypertrigyceridemia, and hypertension) in a cross-sectional cohort of 419 US Caucasian patients treated with antipsychotic drugs. We found several associations between relaxin polymorphisms and hypecholesterolemia, obesity and diabetes, suggesting a role for the relaxin/insulin pathway in the development of metabolic disturbance observed in patients treated with antipsychotics.
SCZ Keywordsschizophrenia
2Front Pharmacol 2014 -1 5: 46
TitleRelaxin-3/RXFP3 networks: an emerging target for the treatment of depression and other neuropsychiatric diseases?
AbstractAnimal and clinical studies of gene-environment interactions have helped elucidate the mechanisms involved in the pathophysiology of several mental illnesses including anxiety, depression, and schizophrenia; and have led to the discovery of improved treatments. The study of neuropeptides and their receptors is a parallel frontier of neuropsychopharmacology research and has revealed the involvement of several peptide systems in mental illnesses and identified novel targets for their treatment. Relaxin-3 is a newly discovered neuropeptide that binds, and activates the G-protein coupled receptor, RXFP3. Existing anatomical and functional evidence suggests relaxin-3 is an arousal transmitter which is highly responsive to environmental stimuli, particularly neurogenic stressors, and in turn modulates behavioral responses to these stressors and alters key neural processes, including hippocampal theta rhythm and associated learning and memory. Here, we review published experimental data on relaxin-3/RXFP3 systems in rodents, and attempt to highlight aspects that are relevant and/or potentially translatable to the etiology and treatment of major depression and anxiety. Evidence pertinent to autism spectrum and metabolism/eating disorders, or related psychiatric conditions, is also discussed. We also nominate some key experimental studies required to better establish the therapeutic potential of this intriguing neuromodulatory signaling system, including an examination of the impact of RXFP3 agonists and antagonists on the overall activity of distinct or common neural substrates and circuitry that are identified as dysfunctional in these debilitating brain diseases.
SCZ Keywordsschizophrenia