1Psychiatry Res 2009 Jan 165: 1-9
TitlePolymorphisms in genes involved in neurodevelopment may be associated with altered brain morphology in schizophrenia: preliminary evidence.
AbstractAn abnormality in neurodevelopment is one of the most robust etiologic hypotheses in schizophrenia (SZ). There is also strong evidence that genetic factors may influence abnormal neurodevelopment in the disease. The present study evaluated in SZ patients, whose brain structural data had been obtained with magnetic resonance imaging (MRI), the possible association between structural brain measures, and 32 DNA polymorphisms, located in 30 genes related to neurogenesis and brain development. DNA was extracted from peripheral blood cells of 25 patients with schizophrenia, genotyping was performed using diverse procedures, and putative associations were evaluated by standard statistical methods (using the software Statistical Package for Social Sciences - SPSS) with a modified Bonferroni adjustment. For reelin (RELN), a protease that guides neurons in the developing brain and underlies neurotransmission and synaptic plasticity in adults, an association was found for a non-synonymous polymorphism (Val997Leu) with left and right ventricular enlargement. A putative association was also found between protocadherin 12 (PCDH12), a cell adhesion molecule involved in axonal guidance and synaptic specificity, and cortical folding (asymmetry coefficient of gyrification index). Although our results are preliminary, due to the small number of individuals analyzed, such an approach could reveal new candidate genes implicated in anomalous neurodevelopment in schizophrenia.
SCZ Keywordsschizophrenia
2Brain Res. 2012 Aug 1470: 130-44
TitleCadherins and neuropsychiatric disorders.
AbstractCadherins mediate cell-cell adhesion but are also involved in intracellular signaling pathways associated with neuropsychiatric disease. Most of the ?100 cadherins that are expressed in the brain exhibit characteristic spatiotemporal expression profiles. Cadherins have been shown to regulate neural tube regionalization, neuronal migration, gray matter differentiation, neural circuit formation, spine morphology, synapse formation and synaptic remodeling. The dysfunction of the cadherin-based adhesive system may alter functional connectivity and coherent information processing in the human brain in neuropsychiatric disease. Several neuropsychiatric disorders, such as epilepsy/mental retardation, autism, bipolar disease and schizophrenia, have been associated with cadherins, mostly by genome-wide association studies. For example, CDH15 and PCDH19 are associated with cognitive impairment; CDH5, CDH8, CDH9, CDH10, CDH13, CDH15, PCDH10, PCDH19 and PCDHb4 with autism; CDH7, CDH12, CDH18, PCDH12 and FAT with bipolar disease and schizophrenia; and CDH11, CDH12 and CDH13 with methamphetamine and alcohol dependency. To date, disease-causing mutations are established for PCDH19 in patients with epilepsy, cognitive impairment and/or autistic features. In conclusion, genes encoding members of the cadherin superfamily are of special interest in the pathogenesis of neuropsychiatric disease because cadherins play a pivotal role in the development of the neural circuitry as well as in mature synaptic function.
SCZ Keywordsschizophrenia