1Mol. Psychiatry 2015 Dec -1: -1
PMID26666201
TitleA genome-wide association study of kynurenic acid in cerebrospinal fluid: implications for psychosis and cognitive impairment in bipolar disorder.
AbstractElevated cerebrospinal fluid (CSF) levels of the glia-derived N-methyl-D-aspartic acid receptor antagonist kynurenic acid (KYNA) have consistently been implicated in schizophrenia and bipolar disorder. Here, we conducted a genome-wide association study based on CSF KYNA in bipolar disorder and found support for an association with a common variant within 1p21.3. After replication in an independent cohort, we linked this genetic variant-associated with reduced SNX7 expression-to positive psychotic symptoms and executive function deficits in bipolar disorder. A series of post-mortem brain tissue and in vitro experiments suggested SNX7 downregulation to result in a caspase-8-driven activation of interleukin-1? and a subsequent induction of the brain kynurenine pathway. The current study demonstrates the potential of using biomarkers in genetic studies of psychiatric disorders, and may help to identify novel drug targets in bipolar disorder.Molecular Psychiatry advance online publication, 15 December 2015; doi:10.1038/mp.2015.186.
SCZ Keywordsschizophrenia
2Neuropharmacology 2016 May -1: -1
PMID27245499
TitleThe kynurenine pathway in schizophrenia and bipolar disorder.
AbstractThe kynurenine pathway of tryptophan degradation generates several neuroactive compounds. Of those, kynurenic acid is an N-methyl-D-aspartate (NMDA) and alpha7 nicotinic receptor antagonist. The kynurenic acid hypothesis of schizophrenia is built upon the fact that kynurenic acid blocks glutamate receptors and is elevated in schizophrenia. Kynurenic acid tightly controls glutamatergic and dopaminergic neurotransmission and elevated brain levels appear related to psychotic symptoms and cognitive impairments. Contributing to enhanced production of kynurenic acid, the expression and enzyme activity of kynurenine 3-monooxygenase (KMO) are reduced in schizophrenia and in bipolar patients with a history of psychosis. The kynurenine pathway is also critically regulated by cytokines, and, indeed, the pro-inflammatory cytokines interleukin (IL)-1? and IL-6 are elevated in schizophrenia and bipolar disorder and stimulate the production of kynurenic acid. One physiological mechanism controlling the activity of the kynurenine pathway originates from the protein sorting nexin 7 (SNX7). This glial signaling pathway initiates a caspase-8-driven activation of IL-1? that induces tryptophan-2,3-dioxygenase 2 (TDO2), an enzyme in the kynurenine pathway. A recent study shows that a genetic variation resulting in decreased expression of SNX7 is linked to increased central levels of kynurenic acid and ultimately to psychosis and cognitive dysfunction in bipolar disorder. Experimental studies highlight the detrimental effects of increased synthesis of kynurenic acid during sensitive periods of early brain development. Furthermore, experimental studies strongly support inhibition of kynurenine aminotransferase (KAT) II as a novel target and a valuable pharmacological strategy in the treatment of psychosis and for improving cognitive performance relevant for schizophrenia.
SCZ Keywordsschizophrenia