1Hum. Mol. Genet. 2004 Nov 13: 2699-708
PMID15345706
TitleEvidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia.
AbstractGenetic variation in dysbindin (DTNBP1: dystrobrevin-binding protein 1) has recently been shown to be associated with schizophrenia. The dysbindin gene is located at chromosome 6p22.3, one of the most promising susceptibility loci in schizophrenia linkage studies. We attempted to replicate this association in a Japanese sample of 670 patients with schizophrenia and 588 controls. We found a nominally significant association with schizophrenia for four single nucleotide polymorphisms and stronger evidence for association in a multi-marker haplotype analysis (P = 0.00028). We then explored functions of dysbindin protein in primary cortical neuronal culture. Overexpression of dysbindin induced the expression of two pre-synaptic proteins, SNAP25 and synapsin I, and increased extracellular basal glutamate levels and release of glutamate evoked by high potassium. Conversely, knockdown of endogenous dysbindin protein by small interfering RNA (siRNA) resulted in the reduction of pre-synaptic protein expression and glutamate release, suggesting that dysbindin might influence exocytotic glutamate release via upregulation of the molecules in pre-synaptic machinery. The overexpression of dysbindin increased phosphorylation of Akt protein and protected cortical neurons against neuronal death due to serum deprivation and these effects were blocked by LY294002, a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor. SiRNA-mediated silencing of dysbindin protein diminished Akt phosphorylation and facilitated neuronal death induced by serum deprivation, suggesting that dysbindin promotes neuronal viability through PI3-kinase-Akt signaling. Genetic variants associated with impairments of these functions of dysbindin could play an important role in the pathogenesis of schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
2Neurosci. Lett. 2005 Aug 383: 328-32
PMID15871910
TitleStepholidine protects against H2O2 neurotoxicity in rat cortical neurons by activation of Akt.
AbstractThe fundamental pathological process(es) associated with schizophrenia (SZ) remain(s) uncertain, but multiple lines of evidence suggest that this condition is associated with excessive stimulation of striatal dopamine (DA) D2 receptors, deficient stimulation of medial prefrontal cortex (mPFC) D1 receptors as well as neuronal apoptosis. Unlike typical antipsychotics, stepholidine (SPD), which is isolated from the Chinese herb stephania, has D1 and D2 dual properties and regulates neuronal cell differentiation and proliferation. It is unknown, however, whether it possesses a neuroprotective property. Here, we report that SPD prevented neuronal cell death from H2O2 exposure and increased the levels of phosphorylated Akt (pAkt), a serine/threonine protein kinase. The SPD-induced neuroprotection and activation of Akt were blocked by LY294002, a PI3-K inhibitor, suggesting that the anti-apoptotic action of SPD is mediated via the PI3-K/Akt signaling pathway. Thus, as a survival or anti-apoptotic factor for neuronal cells, SPD may contribute to the therapeutic action of SPD in SZ treatment.
SCZ Keywordsschizophrenia, schizophrenic
3Neuropsychopharmacology 2006 Apr 31: 853-65
PMID16205782
TitleAntipsychotic drugs inhibit the human corticotropin-releasing-hormone gene promoter activity in neuro-2A cells-an involvement of protein kinases.
AbstractAntipsychotic drugs can regulate transcription of some genes, including those involved in regulation of hypothalamic-pituitary-adrenal (HPA) axis, whose activity is frequently disturbed in schizophrenic patients. However, molecular mechanism of antipsychotic drug action on the corticotropin-releasing hormone (CRH) gene activity has not been investigated so far. This study was undertaken to examine the influence of conventional and atypical antipsychotic drugs on the CRH gene promoter activity in differentiated Neuro-2A cell cultures stably transfected with a human CRH promoter fragment linked to the chloramphenicol acetyltransferase (CAT) reporter gene. It has been found that chlorpromazine (0.1-5.0 microM), haloperidol (0.5-5.0 microM), clozapine (1.0-5.0 microM), thioridazine (1.0-5.0 microM), promazine (5.0 and 10 microM), risperidone (5.0 and 10.0 microM), and raclopride (only at the highest used concentrations, ie 30 and 100 microM) present in culture medium for 5 days inhibited the CRH-CAT activity. Sulpiride and remoxipride had no effect. Since CRH gene activity is most potently enhanced by cAMP/protein kinase A pathway, the effect of antipsychotics on the forskolin-induced CRH-CAT activity was determined. Chlorpromazine (1.0-5.0 microM), haloperidol (1.0-5.0 microM), clozapine (1.0-5.0 microM), thioridazine (3.0 and 5.0 microM), and raclopride (30 and 100 microM), but not promazine, sulpiride, risperidone, and remoxipride, inhibited the forskolin-stimulated CRH gene promoter activity. A possible involvement of protein kinases in chlorpromazine and clozapine inhibitory action on CRH activity was also investigated. It was found that wortmannin (0.01 and 0.02 microM), an inhibitor of phosphatidylinositol 3-kinase (PI3-K), significantly attenuated the inhibitory effect of chlorpromazine and clozapine on CRH gene promoter activity. In line with these results, a Western blot study showed that these drugs increased phospho-Ser-473 Akt level, had no effect on total Akt, and decreased glycogen synthase kinase-3beta level. Additionally, we found that clozapine decreased protein kinase C (PKC) level and that its action on CRH activity was attenuated by PKC activator (TPA, 0.1 microM). The obtained results indicate that inhibition of CRH gene promoter activity by some antipsychotic drugs may be a molecular mechanism responsible for their inhibitory action on HPA axis activity. Clozapine and chlorpromazine action on CRH activity operates mainly through activation of the PI3-K/Akt pathway. Moreover, PKC-mediated pathway seems to be involved in clozapine action on CRH gene activity.
SCZ Keywordsschizophrenia, schizophrenic
4PLoS Genet. 2008 Nov 4: e1000277
PMID19043547
TitleA PI3-kinase-mediated negative feedback regulates neuronal excitability.
AbstractUse-dependent downregulation of neuronal activity (negative feedback) can act as a homeostatic mechanism to maintain neuronal activity at a particular specified value. Disruption of this negative feedback might lead to neurological pathologies, such as epilepsy, but the precise mechanisms by which this feedback can occur remain incompletely understood. At one glutamatergic synapse, the Drosophila neuromuscular junction, a mutation in the group II metabotropic glutamate receptor gene (DmGluRA) increased motor neuron excitability by disrupting an autocrine, glutamate-mediated negative feedback. We show that DmGluRA mutations increase neuronal excitability by preventing PI3 kinase (PI3K) activation and consequently hyperactivating the transcription factor Foxo. Furthermore, glutamate application increases levels of phospho-Akt, a product of PI3K signaling, within motor nerve terminals in a DmGluRA-dependent manner. Finally, we show that PI3K increases both axon diameter and synapse number via the Tor/S6 kinase pathway, but not Foxo. In humans, PI3K and group II mGluRs are implicated in epilepsy, neurofibromatosis, autism, schizophrenia, and other neurological disorders; however, neither the link between group II mGluRs and PI3K, nor the role of PI3K-dependent regulation of Foxo in the control of neuronal excitability, had been previously reported. Our work suggests that some of the deficits in these neurological disorders might result from disruption of glutamate-mediated homeostasis of neuronal excitability.
SCZ Keywordsschizophrenia, schizophrenic
5Dialogues Clin Neurosci 2009 -1 11: 333-48
PMID19877500
TitleThe neurotrophic and neuroprotective effects of psychotropic agents.
AbstractAccumulating evidence suggests that psychotropic agents such as mood stabilizers, antidepressants, and antipsychotics realize their neurotrophic/neuroprotective effects by activating the mitogen activated protein kinase/extracellular signal-related kinase, PI3-kinase, and wingless/glycogen synthase kinase (GSK) 3 signaling pathways. These agents also upregulate the expression of trophic/protective molecules such as brain-derived neurotrophic factor, nerve growth factor, B-cell lymphoma 2, serine-threonine kinase, and Bcl-2 associated athanogene 1, and inactivate proapoptotic molecules such as GSK-3. They also promote neurogenesis and are protective in models of neurodegenerative diseases and ischemia. Most if not all, of this evidence was collected from animal studies that used clinically relevant treatment regimens. Furthermore, human imaging studies have found that these agents increase the volume and density of brain tissue, as well as levels of N-acetyl aspartate and glutamate in selected brain regions. Taken together, these data suggest that the neurotrophic/neuroprotective effects of these agents have broad therapeutic potential in the treatment; not only of mood disorders and schizophrenia, but also neurodegenerative diseases and ischemia.
SCZ Keywordsschizophrenia, schizophrenic
6Platelets 2009 Aug 20: 328-33
PMID19637096
TitleInvestigating GABA and its function in platelets as compared to neurons.
AbstractWe have recently suggested that platelets could be used as a model for neuronal receptors. In this paper we have investigated gamma-aminobutyric acid (GABA) metabolism and GABA receptors in platelets and in cultured neurons to see whether platelets' GABA mimics neuronal GABA receptor activities. We used the ELISA technique for detecting the GABA concentration in platelet rich plasma and cultured neurons. The functional effects of GABA and its receptor ligands on platelets were determined using an aggregometer. We found that the GABA concentration is 30% lower in platelets than in neurons and in both preparations GABA was metabolized by GABA transaminase (GABA-T). GABA potentiated calcium dependent platelet aggregation with a higher value in washed platelets suspension (WPS) then in platelet rich plasma (PRP). This effect was inhibited by benzodiazepines, calcium channel blockers and the selective phosphoinositide 3-kinase antagonist Wortmannin. GABA neurotransmission is involved in most aspects of normal brain function and can be perturbed in many neuropathologic conditions. We concluded that platelets could be further developed to be used as a peripheral model to study neuronal GABAergic function and its abnormality in diseases such as epilepsy and schizophrenia. Furthermore our results indicated that PI3-kinase is involved in calcium dependent GABA induced platelet aggregation as this synergistic effect is inhibited by Wortmannin in dose dependent manner.
SCZ Keywordsschizophrenia, schizophrenic
7J. Physiol. (Lond.) 2010 Sep 588: 3349-54
PMID20530112
TitleSignificance of SGK1 in the regulation of neuronal function.
AbstractThe present brief review highlights the putative role of the serum- and glucocorticoid-inducible-kinase-1 (SGK1) in the regulation of neuronal function. SGK1 is genomically upregulated by cell shrinkage and by a variety of hormones including mineralocorticoids and glucocorticoids. The kinase is activated by insulin and growth factors via phosphatidylinositide-3-kinase (PI3-kinase), phosphoinositide-dependent kinase PDK1 and mammalian target of rapamycin mTORC2. SGK1 upregulates ion channels (e.g. SCN5A, ENaC, ASIC1, TRPV5,6, ROMK, Kv1.1-5, KCNEx/KCNQ1-5, GluR6, VSOAC, ClC2, CFTR), carriers (e.g. NHE3, NKCC2, NCC, NaPiIIb, SMIT, GLUT1,4, SGLT1, NaDC, EAAT1-5, SN1, ASCT2, 4F2/LAT, PepT2), and the Na(+)/K(+)-ATPase. SGK1 regulates enzymes (e.g. glycogen-synthase-kinase-3, ubiquitin-ligase Nedd4-2, phosphomannose-mutase-2), and transcription factors (e.g. forkhead transcription factor Foxo3a, ?-catenin, nuclear factor-kappa-B (NFB)). SGK1 participates in the regulation of transport, hormone release, neuroexcitability, inflammation, coagulation, cell proliferation and apoptosis. SGK1 contributes to regulation of renal Na(+) retention, renal K(+) elimination, salt appetite, gastric acid secretion, intestinal Na(+)/H(+) exchange and nutrient transport, insulin-dependent salt sensitivity of blood pressure, salt sensitivity of peripheral glucose uptake, cardiac repolarization and memory consolidation. Presumably, SGK1 contributes to the regulation of diverse cerebral functions (e.g. memory consolidation, fear retention) and the pathophysiology of several cerebral diseases (e.g. Parkinson's disease, schizophrenia, depression, Alzheimer's disease). Despite multiple SGK1 functions, the phenotype of the SGK1 knockout mouse is mild and becomes only apparent under challenging conditions.
SCZ Keywordsschizophrenia, schizophrenic
8J. Nutr. Biochem. 2010 Apr 21: 268-77
PMID19369057
TitleEffects of eicosapentaenoic acid on synaptic plasticity, fatty acid profile and phosphoinositide 3-kinase signaling in rat hippocampus and differentiated PC12 cells.
AbstractPlacebo-controlled clinical studies suggest that intake of n-3 polyunsaturated fatty acids improves neurological disorders such as Alzheimer's disease, Huntington's disease and schizophrenia. To evaluate the impact of eicosapentaenoic acid (EPA), we orally administered highly purified ethyl EPA (EPA-E) to rats at a dose of 1.0 mg/g per day and measured long-term potentiation of the CA1 hippocampal region, a physiological correlate of synaptic plasticity that is thought to underlie learning and memory. The mean field excitatory postsynaptic potential slope of the EPA-E group was significantly greater than that of the control group in the CA1 region. Gene expression of hippocampal p85alpha, one of the regulatory subunits of phosphatidylinositol 3-kinase (PI3-kinase), was increased with EPA-E administration. Investigation of fatty acid profiles of neuronal and glia-enriched fractions demonstrated that a single administration of EPA-E significantly increased neuronal and glial EPA content and glial docosahexaenoic acid content, clearly suggesting that EPA was indeed taken up by both neurons and glial cells. In addition, we investigated the direct effects of EPA on the PI3-kinase/Akt pathway in differentiated PC12 cells. Phosphorylated-Akt expression was significantly increased in EPA-treated cells, and nerve growth factor withdrawal-induced increases in cell death and caspase-3 activity were suppressed by EPA treatment. These findings suggest that EPA protects against neurodegeneration by modulating synaptic plasticity and activating the PI3-kinase/Akt pathway, possibly by its own functional effects in neurons and glial cells and by its capacity to increase brain docosahexaenoic acid.
SCZ Keywordsschizophrenia, schizophrenic
9J Psychiatr Res 2013 Apr 47: 425-37
PMID23218666
TitleGene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells.
AbstractPeripheral blood mononuclear cells (PBMCs) represent an accessible tissue source for gene expression profiling in schizophrenia that could provide insight into the molecular basis of the disorder. This study used the Illumina HT_12 microarray platform and quantitative real time PCR (QPCR) to perform mRNA expression profiling on 114 patients with schizophrenia or schizoaffective disorder and 80 non-psychiatric controls from the Australian schizophrenia Research Bank (ASRB). Differential expression analysis revealed altered expression of 164 genes (59 up-regulated and 105 down-regulated) in the PBMCs from patients with schizophrenia compared to controls. Bioinformatic analysis indicated significant enrichment of differentially expressed genes known to be involved or associated with immune function and regulating the immune response. The differential expression of 6 genes, EIF2C2 (Ago 2), MEF2D, EVL, PI3, S100A12 and DEFA4 was confirmed by QPCR. Genome-wide expression analysis of PBMCs from individuals with schizophrenia was characterized by the alteration of genes with immune system function, supporting the hypothesis that the disorder has a significant immunological component in its etiology.
SCZ Keywordsschizophrenia, schizophrenic
10Front Behav Neurosci 2014 -1 8: 455
PMID25688191
TitleInvestigation of gene effects and epistatic interactions between Akt1 and neuregulin 1 in the regulation of behavioral phenotypes and social functions in genetic mouse models of schizophrenia.
AbstractAccumulating evidence from human genetic studies has suggested several functional candidate genes that might contribute to susceptibility to schizophrenia, including AKT1 and neuregulin 1 (NRG1). Recent findings also revealed that NRG1 stimulates the PI3-kinase/AKT signaling pathway, which might be involved in the functional outcomes of some schizophrenic patients. The aim of this study was to evaluate the effect of Akt1-deficiency and Nrg1-deficiency alone or in combination in the regulation of behavioral phenotypes, cognition, and social functions using genetically modified mice as a model. Male Akt1 (+/-), Nrg1 (+/-), and double mutant mice were bred and compared with their wild-type (WT) littermate controls. In Experiment 1, general physical examination revealed that all mutant mice displayed a normal profile of body weight during development and a normal brain activity with microPET scan. In Experiment 2, no significant genotypic differences were found in our basic behavioral phenotyping, including locomotion, anxiety-like behavior, and sensorimotor gating function. However, both Nrg1 (+/-) and double mutant mice exhibited impaired episodic-like memory. Double mutant mice also had impaired sociability. In Experiment 3, a synergistic epistasis between Akt1 and Nrg1 was further confirmed in double mutant mice in that they had impaired social interaction compared to the other 3 groups, especially encountering with a novel male or an ovariectomized female. Double mutant and Nrg1 (+/-) mice also emitted fewer female urine-induced ultrasonic vocalization calls. Collectively, our results indicate that double deficiency of Akt1 and Nrg1 can result in the impairment of social cognitive functions, which might be pertinent to the pathogenesis of schizophrenia-related social cognition.
SCZ Keywordsschizophrenia, schizophrenic
11Front Behav Neurosci 2014 -1 8: 455
PMID25688191
TitleInvestigation of gene effects and epistatic interactions between Akt1 and neuregulin 1 in the regulation of behavioral phenotypes and social functions in genetic mouse models of schizophrenia.
AbstractAccumulating evidence from human genetic studies has suggested several functional candidate genes that might contribute to susceptibility to schizophrenia, including AKT1 and neuregulin 1 (NRG1). Recent findings also revealed that NRG1 stimulates the PI3-kinase/AKT signaling pathway, which might be involved in the functional outcomes of some schizophrenic patients. The aim of this study was to evaluate the effect of Akt1-deficiency and Nrg1-deficiency alone or in combination in the regulation of behavioral phenotypes, cognition, and social functions using genetically modified mice as a model. Male Akt1 (+/-), Nrg1 (+/-), and double mutant mice were bred and compared with their wild-type (WT) littermate controls. In Experiment 1, general physical examination revealed that all mutant mice displayed a normal profile of body weight during development and a normal brain activity with microPET scan. In Experiment 2, no significant genotypic differences were found in our basic behavioral phenotyping, including locomotion, anxiety-like behavior, and sensorimotor gating function. However, both Nrg1 (+/-) and double mutant mice exhibited impaired episodic-like memory. Double mutant mice also had impaired sociability. In Experiment 3, a synergistic epistasis between Akt1 and Nrg1 was further confirmed in double mutant mice in that they had impaired social interaction compared to the other 3 groups, especially encountering with a novel male or an ovariectomized female. Double mutant and Nrg1 (+/-) mice also emitted fewer female urine-induced ultrasonic vocalization calls. Collectively, our results indicate that double deficiency of Akt1 and Nrg1 can result in the impairment of social cognitive functions, which might be pertinent to the pathogenesis of schizophrenia-related social cognition.
SCZ Keywordsschizophrenia, schizophrenic
12Brain Res. 2016 May -1: -1
PMID27208492
TitleNa(+), K(+)-ATPase dysfunction causes cerebrovascular endothelial cell degeneration in rat prefrontal cortex slice cultures.
AbstractCerebrovascular endothelial cell dysfunction resulting in imbalance of cerebral blood flow contributes to the onset of psychiatric disorders such as depression, schizophrenia and bipolar disorder. Although decrease in Na(+), K(+)-ATPase activity has been reported in the patients with schizophrenia and bipolar disorder, the contribution of Na(+), K(+)-ATPase to endothelial cell dysfunction remains poorly understood. Here, by using rat neonatal prefrontal cortex slice cultures, we demonstrated that pharmacological inhibition of Na(+), K(+)-ATPase by ouabain induced endothelial cell injury. Treatment with ouabain significantly decreased immunoreactive area of rat endothelial cell antigen-1 (RECA-1), a marker of endothelial cells, in a time-dependent manner. Ouabain also decreased Bcl-2/Bax ratio and phosphorylation level of glycogen synthase kinase 3? (GSK3?) (Ser9), which were prevented by lithium carbonate. On the other hand, ouabain-induced endothelial cell injury was exacerbated by concomitant treatment with LY294002, an inhibitor of phosphoinositide 3- (PI3-) kinase. We also found that xestospongin C, an inhibitor of inositol triphosphate (IP3) receptor, but not SEA0400, an inhibitor of Na(+), Ca(2+) exchanger (NCX), protected endothelial cells from cytotoxicity of ouabain. These results suggest that cerebrovascular endothelial cell degeneration induced by Na(+), K(+)-ATPase inhibition resulting in Ca(2+) release from endoplasmic reticulum (ER) and activation of GSK3? signaling underlies pathogenesis of these psychiatric disorders.
SCZ Keywordsschizophrenia, schizophrenic