1J. Hum. Genet. 2014 Jan 59: 54-6
PMID24196380
TitleGenetic association study between the detected risk variants based upon type II diabetes GWAS and psychotic disorders in the Japanese population.
AbstractSeveral epidemiological and genetic studies have suggested that the risk of type II diabetes (T2D) is likely to overlap with the susceptibility to psychotic disorders such as schizophrenia (SCZ) and bipolar disorder (BD). In this study, we aimed to examine the association of single-nucleotide polymorphisms (SNPs) detected in previous T2D genome-wide association studies (GWAS) with SCZ, BD and psychosis (SCZ plus BD). A total of 37 SNPs were selected from the literature. A two-stage analysis was conducted using a first set of screening samples (total N=3037) and a second set of replication samples (N=4950). None of the SNPs showed a significant association to the screening samples after correction for multiple testing. To avoid type II error, we genotyped the top three SNPs in BCL11A, HMG20A and HNF4A showing associations with any of the phenotypes (Puncorrected <0.01) using independent samples to replicate the nominal associations. However, we were unable to find any significant associations based on the screening results (Puncorrected>0.05). Our findings did not support the shared genetic risk between T2D and psychotic disorders in the Japanese population. However, further replication using a larger sample size is required.
SCZ Keywordsschizophrenia
2J. Clin. Invest. 2015 Jun 125: 2363-8
PMID25938782
TitleBCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations.
AbstractA transition from fetal hemoglobin (HbF) to adult hemoglobin (HbA) normally occurs within a few months after birth. Increased production of HbF after this period of infancy ameliorates clinical symptoms of the major disorders of adult ?-hemoglobin: ?-thalassemia and sickle cell disease. The transcription factor BCL11A silences HbF and has been an attractive therapeutic target for increasing HbF levels; however, it is not clear to what extent BCL11A inhibits HbF production or mediates other developmental functions in humans. Here, we identified and characterized 3 patients with rare microdeletions of 2p15-p16.1 who presented with an autism spectrum disorder and developmental delay. Moreover, these patients all exhibited substantial persistence of HbF but otherwise retained apparently normal hematologic and immunologic function. Of the genes within 2p15-p16.1, only BCL11A was commonly deleted in all of the patients. Evaluation of gene expression data sets from developing and adult human brains revealed that BCL11A expression patterns are similar to other genes associated with neurodevelopmental disorders. Additionally, common SNPs within the second intron of BCL11A are strongly associated with schizophrenia. Together, the study of these rare patients and orthogonal genetic data demonstrates that BCL11A plays a central role in silencing HbF in humans and implicates BCL11A as an important factor for neurodevelopment.
SCZ Keywordsschizophrenia