1Hum. Mol. Genet. 2015 Oct 24: 5512-23
PMID26199316
TitleNeuronal copper homeostasis susceptibility by genetic defects in dysbindin, a schizophrenia susceptibility factor.
AbstractEnvironmental factors and susceptible genomes interact to determine the risk of neurodevelopmental disorders. Although few genes and environmental factors have been linked, the intervening cellular and molecular mechanisms connecting a disorder susceptibility gene with environmental factors remain mostly unexplored. Here we focus on the schizophrenia susceptibility gene DTNBP1 and its product dysbindin, a subunit of the BLOC-1 complex, and describe a neuronal pathway modulating copper metabolism via ATP7A. Mutations in ATP7A result in Menkes disease, a disorder of copper metabolism. Dysbindin/BLOC-1 and ATP7A genetically and biochemically interact. Furthermore, disruption of this pathway causes alteration in the transcriptional profile of copper-regulatory and dependent factors in the hippocampus of dysbindin/BLOC-1-null mice. Dysbindin/BLOC-1 loss-of-function alleles do not affect cell and tissue copper content, yet they alter the susceptibility to toxic copper challenges in both mammalian cells and Drosophila. Our results demonstrate that perturbations downstream of the schizophrenia susceptibility gene DTNBP1 confer susceptibility to copper, a metal that in excess is a neurotoxin and whose depletion constitutes a micronutrient deficiency.
SCZ Keywordsschizophrenia
2Neurobiol. Dis. 2015 Sep 81: 154-61
PMID25583185
TitleMolecular basis of neurodegeneration and neurodevelopmental defects in Menkes disease.
AbstractATP7A mutations impair copper metabolism resulting in three distinct genetic disorders in humans. These diseases are characterized by neurological phenotypes ranging from intellectual disability to neurodegeneration. Severe ATP7A loss-of-function alleles trigger Menkes disease, a copper deficiency condition where systemic and neurodegenerative phenotypes dominate clinical outcomes. The pathogenesis of these manifestations has been attributed to the hypoactivity of a limited number of copper-dependent enzymes, a hypothesis that we refer as the oligoenzymatic pathogenic hypothesis. This hypothesis, which has dominated the field for 25 years, only explains some systemic Menkes phenotypes. However, we argue that this hypothesis does not fully account for the Menkes neurodegeneration or neurodevelopmental phenotypes. Here, we propose revisions of the oligoenzymatic hypothesis that could illuminate the pathogenesis of Menkes neurodegeneration and neurodevelopmental defects through unsuspected overlap with other neurological conditions including Parkinson's, intellectual disability, and schizophrenia.
SCZ Keywordsschizophrenia