1 | Expert Opin Drug Discov 2013 Dec 8: 1515-27 |
---|---|
PMID | 24147578 |
Title | Glutamate drugs and pharmacogenetics of OCD: a pathway-based exploratory approach. |
Abstract | Neuropharmacology research in glutamate-modulating drugs supports their development and use in the management of neuropsychiatric disorders, including major depression, Alzheimer's disorder and schizophrenia. Concomitantly, there is a growing use of these agents used in the treatment of obsessive-compulsive disorder (OCD). This article provides a review of glutamate-modulating drugs used in the treatment of OCD. Specifically, the authors examine riluzole, N-acetylcysteine, d-cycloserine, glycine, ketamine, memantine and acamprosate as treatments. Furthermore, recent genetic epidemiology research findings are presented with a focus on the positional candidate genes SLC1A1 (a glutamate transporter), ADAR3 (an RNA-editing enzyme), RYR3 (a Ca(2+) channel), PBX1 (a homeobox transcription factor) and a GWAS candidate gene, DLGAP1 (a protein interacting with post-synaptic density). These genetic findings are submitted to a curated bioinformatics database to conform a biological network for discerning potential pharmacological targets. In the genetically informed network, known genes and identified key connecting components, including DLG4 (a developmental gene), PSD-95 (a synaptic scaffolding protein) and PSEN1 (presenilin, a regulator of secretase), conform a group of potential pharmacological targets. These potential targets can be explored, in the future, to deliver new therapeutic approaches to OCD. There is also the need to develop a better understanding of neuroprotective mechanisms as a foundation for future OCD drug discovery. |
SCZ Keywords | schizophrenia |
2 | Neuropsychiatr Dis Treat 2015 -1 11: 2315-22 |
PMID | 26396515 |
Title | Identification of two novel mutations, PSEN1 E280K and PRNP G127S, in a Malaysian family. |
Abstract | Alzheimer's disease (AD) is the most common form of dementia, which can be categorized into two main forms: early onset AD and late onset AD. The genetic background of early onset AD is well understood, and three genes, the APP, PSEN1, and PSEN2 have been identified as causative genes. In the current study, we tested three siblings from Malaysia who were diagnosed with early onset dementia, as well as their available family members. The family history was positive as their deceased father was similarly affected. Patients were tested for mutations in APP, PSEN1, PSEN2, and PRNP. A novel variant, E280K, was discovered in exon 8 of PSEN1 in the three siblings. In silico analyses with SIFT, SNAP, and PolyPhen2 prediction tools and three-dimensional modeling were performed, and the results suggested that the mutation is probably a pathogenic variant. Two additional pathogenic mutations were previously been described for codon 280, E280A, and E280G, which could support the importance of the E280 residue in the PS1 protein contributing to the pathogenic nature of E280K. Additional ten family members were screened for the E280K mutation, and all of them were negative. Six of them presented with a variety of neuropsychiatric symptoms, including learning disabilities, epilepsy, and schizophrenia, while four family members were asymptomatic. A novel PRNP G127S mutation was found in a step-niece of the three siblings harboring the PSEN1 E280K mutation. In silico predictions for PRNP G127S mutation suggested that this might be possibly a damaging variant. Additional studies to characterize PRNP G127S would be necessary to further understand the effects of this mutation. |
SCZ Keywords | schizophrenia |
3 | Metallomics 2016 Jan -1: -1 |
PMID | 26745006 |
Title | Lead neurotoxicity: exploring the potential impact of lead substitution in zinc-finger proteins on mental health. |
Abstract | Childhood lead poisoning is a costly and largely preventable public health problem that lowers IQs, decreases attention spans, and leads to the development of other childhood intellectual disabilities. Furthermore, recent evidence links developmental lead poisoning with the etiology of disorders that appear much later in life, such as Alzheimer's disease, Parkinson's disease, and schizophrenia. Little is known about how lead influences the onset of these disorders. This paper reviews the evidence that lead substitution for zinc in zinc-finger proteins contributes to the development of Alzheimer's disease, Parkinson's disease, and schizophrenia. The zinc-finger proteins potentially impacted by lead include DNA methyltransferase 1 (DNMT1) and Presenilin 1 and 2 (PSEN1/2) in Alzheimer's disease, the dopamine receptor in Parkinson's disease, and the NMDA receptor, zinc-finger protein 804A (ZNF804A), and disrupted-in-schizophrenia 1 (DISC1)-binding zinc-finger (DBZ) in schizophrenia. |
SCZ Keywords | schizophrenia |
4 | J. Alzheimers Dis. 2016 Mar 52: 581-608 |
PMID | 27031468 |
Title | The Zebrafish Equivalent of Alzheimer's Disease-Associated PRESENILIN Isoform PS2V Regulates Inflammatory and Other Responses to Hypoxic Stress. |
Abstract | Dominant mutations in the PRESENILIN genes PSEN1 and PSEN2 cause familial Alzheimer's disease (fAD) that usually shows onset before 65 years of age. In contrast, genetic variation at the PSEN1 and PSEN2 loci does not appear to contribute to risk for the sporadic, late onset form of the disease (sAD), leading to doubts that these genes play a role in the majority of AD cases. However, a truncated isoform of PSEN2, PS2V, is upregulated in sAD brains and is induced by hypoxia and high cholesterol intake. PS2V can increase ?-secretase activity and suppress the unfolded protein response (UPR), but detailed analysis of its function has been hindered by lack of a suitable, genetically manipulable animal model since mice and rats lack this PRESENILIN isoform. We recently showed that zebrafish possess an isoform, PS1IV, that is cognate to human PS2V. Using an antisense morpholino oligonucleotide, we can block specifically the induction of PS1IV that normally occurs under hypoxia. Here, we exploit this ability to identify gene regulatory networks that are modulated by PS1IV. When PS1IV is absent under hypoxia-like conditions, we observe changes in expression of genes controlling inflammation (particularly sAD-associated IL1B and CCR5), vascular development, the UPR, protein synthesis, calcium homeostasis, catecholamine biosynthesis, TOR signaling, and cell proliferation. Our results imply an important role for PS2V in sAD as a component of a pathological mechanism that includes hypoxia/oxidative stress and support investigation of the role of PS2V in other diseases, including schizophrenia, when these are implicated in the pathology. |
SCZ Keywords | schizophrenia |