1Gene 2013 Aug 525: 107-15
PMID23644028
TitlePathway analysis of a genome-wide association study in schizophrenia.
AbstractThe aim of this study was to identify the candidate single nucleotide polymorphisms (SNPs) and candidate mechanisms that contribute to schizophrenia susceptibility and to generate a SNP to gene to pathway hypothesis using an analytical pathway-based approach.
We used schizophrenia GWAS data of the genotypes of 660,259 SNPs in 1378 controls and 1351 cases of European descent after quality control filtering. ICSNPathway (Identify candidate Causal SNPs and Pathways) analysis was applied to the schizophrenia GWAS dataset. The first stage involved the pre-selection of candidate SNPs by linkage disequilibrium analysis and the functional SNP annotation of the most significant SNPs found. The second stage involved the annotation of biological mechanisms for the pre-selected candidate SNPs using improved-gene set enrichment analysis.
ICSNPathway analysis identified fifteen candidate SNPs, ten candidate pathways, and nine hypothetical biological mechanisms. The most strongly associated potential pathways were as follows. First, rs1644731 and rs1644730 to RDH8 to estrogen biosynthetic process (p<0.001, FDR<0.001). The genes involved in this pathway are RDH8 and HSD3B1 (p<0.05). All-trans-retinol dehydrogenase (RDH8) is a visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol in the presence of NADPH. The chemical reactions and pathways involved result in the formation of estrogens, which are C18 steroid hormones that can stimulate the development of female sexual characteristics. Second, rs1146031 to ACVR1 to mesoderm formation and activin binding (p<0.001, FDR=0.032, 0.034). Two of 15 candidate genes are known genes associated with schizophrenia: KCNQ2 and APOL2. One of the 10 candidate pathways, estrogen biosynthetic process, is known to be associated with schizophrenia (p<0.001, FDR<0.001). However, 13 of candidate genes (RDH8, ACVR1, PSMD9, KCNAB1, SLC17A3, ARCN1, COG7, STAB2, LRPAP1, STAB1, CXCL16, COL4A4, EXOSC3) and 9 of candidate pathways were novel.
By applying ICSNPathway analysis to schizophrenia GWAS data, we identified candidate SNPs, genes like KCNQ2 and APOL2 and pathways involving the estrogen biosynthetic process may contribute to schizophrenia susceptibility. Further analyses are needed to validate the results of this analysis.
SCZ Keywordsschizophrenia
2J. Proteome Res. 2014 Nov 13: 4567-80
PMID25198678
TitleDysbindin-associated proteome in the p2 synaptosome fraction of mouse brain.
AbstractThe gene DTNBP1 encodes the protein dysbindin and is among the most promising and highly investigated schizophrenia-risk genes. Accumulating evidence suggests that dysbindin plays an important role in the regulation of neuroplasticity. Dysbindin was reported to be a stable component of BLOC-1 complex in the cytosol. However, little is known about the endogenous dysbindin-containing complex in the brain synaptosome. In this study, we investigated the associated proteome of dysbindin in the P2 synaptosome fraction of mouse brain. Our data suggest that dysbindin has three isoforms associating with different complexes in the P2 fraction of mouse brain. To facilitate immunopurification, BAC transgenic mice expressing a tagged dysbindin were generated, and 47 putative dysbindin-associated proteins, including all components of BLOC-1, were identified by mass spectrometry in the dysbindin-containing complex purified from P2. The interactions of several selected candidates, including WDR11, FAM91A1, snapin, muted, pallidin, and two proteasome subunits, PSMD9 and PSMA4, were verified by coimmunoprecipitation. The specific proteasomal activity is significantly reduced in the P2 fraction of the brains of the dysbindin-null mutant (sandy) mice. Our data suggest that dysbindin is functionally interrelated to the ubiquitin-proteasome system and offer a molecular repertoire for future study of dysbindin functional networks in brain.
SCZ Keywordsschizophrenia
3Sci Rep 2015 -1 5: 12032
PMID26166263
TitleT2D and Depression Risk Gene Proteasome Modulator 9 is Linked to Insomnia.
AbstractInsomnia increases type-2 diabetes (T2D) risk. The 12q24 locus is linked to T2D, depression, bipolar disorder and anxiety. At the 12q24 locus, the Proteasome-Modulator 9 (PSMD9) single nucleotide polymorphisms (SNPs) rs74421874 [intervening sequence (IVS) 3+nt460-G>A], rs3825172 (IVS3+nt437-C>T) and rs14259 (E197G-A>G) are linked to: T2D, depression, anxiety, maturity-onset-diabetes-of the young 3/MODY3, obesity, waist circumference, hypertension, hypercholesterolemia, T2D-macrovascular disease, T2D-microvascular disease, T2D-neuropathy, T2D-carpal-tunnel syndrome, T2D-nephropathy, T2D-retinopathy and non-diabetic retinopathy. PSMD9 SNP rs1043307/rs14259 (E197G-A>G) plays a role in anti-depressant therapy response, depression and schizophrenia. We aimed at determining PSMD9 rs74421874/rs3825172/rs14259 SNPs potential linkage to primary insomnia and sleep hours in T2D families. We recruited 200 Italian T2D families phenotyping them for primary insomnia and sleep hours per night. PSMD9-T2D-risk SNPs rs74421874/rs3825172 and rs1043307/rs14259 were tested for linkage with insomnia and sleep hours. Non-parametric-linkage analysis, linkage-disequilibrium-model analysis, single-SNP analysis, cluster-based-parametric analysis, quantitative-trait and variant-component analysis were performed using Merlin software. To validate data, 1000 replicates were executed for the significant non-parametric data. PSMD9 rs74421874 (IVS3+nt460-G>A), rs3825172 (IVS3+nt437-C>T) and rs1043307/rs14259 (E197G-A>G) SNPs are linked to insomnia in our Italian families.
SCZ Keywordsschizophrenia