1J. Neurosci. 2002 Feb 22: 1290-302
PMID11850457
TitleI(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain.
AbstractDopaminergic (DA) midbrain neurons in the substantia nigra (SN) and ventral tegmental area (VTA) are involved in various brain functions such as voluntary movement and reward and are targets in disorders such as Parkinson's disease and schizophrenia. To study the functional properties of identified DA neurons in mouse midbrain slices, we combined patch-clamp recordings with either neurobiotin cell-filling and triple labeling confocal immunohistochemistry, or single-cell RT-PCR. We discriminated four DA subpopulations based on anatomical and neurochemical differences: two calbindin D28-k (CB)-expressing DA populations in the substantia nigra (SN/CB+) or ventral tegmental area (VTA/CB+), and respectively, two calbindin D28-k negative DA populations (SN/CB-, VTA/CB-). VTA/CB+ DA neurons displayed significantly faster pacemaker frequencies with smaller afterhyperpolarizations compared with other DA neurons. In contrast, all four DA populations possessed significant differences in I(h) channel densities and I(h) channel-mediated functional properties like SAG amplitudes and rebound delays in the following order: SN/CB- --> VTA/CB- --> SN/CB+ --> VTA/CB+. Single-cell RT-multiplex PCR experiments demonstrated that differential calbindin but not calretinin expression is associated with differential I(h) channel densities. Only in SN/CB- DA neurons, however, I(h) channels were actively involved in pacemaker frequency control. In conclusion, diversity within the DA system is not restricted to distinct axonal projections and differences in synaptic connectivity, but also involves differences in postsynaptic conductances between neurochemically and topographically distinct DA neurons.
SCZ Keywordsschizophrenia, schizophrenic
2PLoS ONE 2013 -1 8: e70553
PMID23950961
TitleElectrophysiological heterogeneity of fast-spiking interneurons: chandelier versus basket cells.
AbstractIn the prefrontal cortex, parvalbumin-positive inhibitory neurons play a prominent role in the neural circuitry that subserves working memory, and alterations in these neurons contribute to the pathophysiology of schizophrenia. Two morphologically distinct classes of parvalbumin neurons that target the perisomatic region of pyramidal neurons, chandelier cells (ChCs) and basket cells (BCs), are generally thought to have the same "fast-spiking" phenotype, which is characterized by a short action potential and high frequency firing without adaptation. However, findings from studies in different species suggest that certain electrophysiological membrane properties might differ between these two cell classes. In this study, we assessed the physiological heterogeneity of fast-spiking interneurons as a function of two factors: species (macaque monkey vs. rat) and morphology (chandelier vs. basket). We showed previously that electrophysiological membrane properties of BCs differ between these two species. Here, for the first time, we report differences in ChCs membrane properties between monkey and rat. We also found that a number of membrane properties differentiate ChCs from BCs. Some of these differences were species-independent (e.g., fast and medium afterhyperpolarization, firing frequency, and depolarizing SAG), whereas the differences in the first spike latency between ChCs and BCs were species-specific. Our findings indicate that different combinations of electrophysiological membrane properties distinguish ChCs from BCs in rodents and primates. Such electrophysiological differences between ChCs and BCs likely contribute to their distinctive roles in cortical circuitry in each species.
SCZ Keywordsschizophrenia, schizophrenic
3Eur. J. Neurosci. 2014 Apr 39: 1074-90
PMID24712988
TitleNeurophysiological modification of CA1 pyramidal neurons in a transgenic mouse expressing a truncated form of disrupted-in-schizophrenia 1.
AbstractA t(1;11) balanced chromosomal translocation transects the Disc1 gene in a large Scottish family and produces genome-wide linkage to schizophrenia and recurrent major depressive disorder. This study describes our in vitro investigations into neurophysiological function in hippocampal area CA1 of a transgenic mouse (DISC1tr ) that expresses a truncated version of DISC1 designed to reproduce aspects of the genetic situation in the Scottish t(1;11) pedigree. We employed both patch-clamp and extracellular recording methods in vitro to compare intrinsic properties and synaptic function and plasticity between DISC1tr animals and wild-type littermates. Patch-clamp analysis of CA1 pyramidal neurons (CA1-PNs) revealed no genotype dependence in multiple subthreshold parameters, including resting potential, input resistance, hyperpolarization-activated 'SAG' and resonance properties. Suprathreshold stimuli revealed no alteration to action potential (AP) waveform, although the initial rate of AP production was higher in DISC1tr mice. No difference was observed in afterhyperpolarizing potentials following trains of 5-25 APs at 50 Hz. Patch-clamp analysis of synaptic responses in the Schaffer collateral commissural (SC) pathway indicated no genotype-dependence of paired pulse facilitation, excitatory postsynaptic potential summation or AMPA/NMDA ratio. Extracellular recordings also revealed an absence of changes to SC synaptic responses and indicated input-output and short-term plasticity were also unaltered in the temporoammonic (TA) input. However, in DISC1tr mice theta burst-induced long-term potentiation was enhanced in the SC pathway but completely lost in the TA pathway. These data demonstrate that expressing a truncated form of DISC1 affects intrinsic properties of CA1-PNs and produces pathway-specific effects on long-term synaptic plasticity.
SCZ Keywordsschizophrenia, schizophrenic
4Physiol Rep 2014 May 2: -1
PMID24844635
TitleActivation of 5-HT2A receptors by TCB-2 induces recurrent oscillatory burst discharge in layer 5 pyramidal neurons of the mPFC in vitro.
AbstractThe medial prefrontal cortex (mPFC) is a region of neocortex that plays an integral role in several cognitive processes which are abnormal in schizophrenic patients. As with other cortical regions, large-bodied layer 5 pyramidal neurons serve as the principle subcortical output of microcircuits of the mPFC. The coexpression of both inhibitory serotonin 5-HT1A receptors on the axon initial segments, and excitatory 5-HT2A receptors throughout the somatodendritic compartments, by layer 5 pyramidal neurons allows serotonin to provide potent top-down regulation of input-output relationships within cortical microcircuits. Application of 5-HT2A agonists has previously been shown to enhance synaptic input to layer 5 pyramidal neurons, as well as increase the gain in neuronal firing rate in response to increasing depolarizing current steps. Using whole-cell patch-clamp recordings obtained from layer 5 pyramidal neurons of the mPFC of C57/bl6 mice, the aim of our present study was to investigate the modulation of long-term spike trains by the selective 5-HT2A agonist TCB-2. We found that in the presence of synaptic blockers, TCB-2 induced recurrent oscillatory bursting (ROB) after 15-20 sec of tonic spiking in 7 of the 14 cells. In those seven cells, ROB discharge was accurately predicted by the presence of a voltage SAG in response to a hyperpolarizing current injection. This effect was reversed by 5-10 min of drug washout and ROB discharge was inhibited by both synaptic activity and coapplication of the 5-HT2A/2C antagonist ketanserin. While the full implications of this work are not yet understood, it may provide important insight into serotonergic modulation of cortical networks.
SCZ Keywordsschizophrenia, schizophrenic