1Arch. Gen. Psychiatry 2011 Jan 68: 21-31
TitleAltered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia.
AbstractDisturbances in markers of cortical ?-aminobutyric acid neurotransmission are a common finding in schizophrenia. The nature of ?-aminobutyric acid neurotransmission (hyperpolarizing or depolarizing) depends on the local intracellular chloride concentration. In the central nervous system, the intracellular chloride level is determined by the activity of 2 cation-chloride transporters, NKCC1 and KCC2. The activities of these transporters are in turn regulated by a network of serine-threonine kinases that includes OXSR1, STK39, and the WNK kinases WNK1, WNK3, and WNK4.
To compare the levels of NKCC1, KCC2, OXSR1, STK39, WNK1, WNK3, and WNK4 transcripts in prefrontal cortex area 9 between subjects with schizophrenia and healthy comparison subjects.
Real-time quantitative polymerase chain reaction technique was used to measure transcript levels in the prefrontal cortex.
Human brain specimens were obtained from autopsies conducted at the Allegheny County Medical Examiner's Office, Pittsburgh, Pennsylvania.
Postmortem brain specimens from 42 subjects with schizophrenia and 42 matched healthy comparison subjects. Brain specimens from 18 macaque monkeys exposed to haloperidol, olanzapine, or sham long-term.
Relative expression levels for NKCC1, KCC2, OXSR1, STK39, WNK1, WNK3, and WNK4 transcripts compared with the mean expression level of 3 housekeeping transcripts.
OXSR1 and WNK3 transcripts were substantially overexpressed in subjects with schizophrenia relative to comparison subjects. In contrast, NKCC1, KCC2, STK39, WNK1, and WNK4 transcript levels did not differ between subject groups. OXSR1 and WNK3 transcript expression levels were not changed in antipsychotic-exposed monkeys and were not affected by potential confounding factors in the subjects with schizophrenia.
In schizophrenia, increased expression levels, and possibly increased kinase activities, of OXSR1 and WNK3 may shift the balance of chloride transport by NKCC1 and KCC2 and alter the nature of ?-aminobutyric acid neurotransmission in the prefrontal cortex.
SCZ Keywordsschizophrenia
2Transl Psychiatry 2014 -1 4: e348
TitleNovel implications of Lingo-1 and its signaling partners in schizophrenia.
AbstractMyelination and neurite outgrowth both occur during brain development, and their disturbance has been previously been implicated in the pathophysiology of schizophrenia. Leucine-rich repeat and immunoglobulin domain-containing protein (Lingo-1) is a potent negative regulator of axonal myelination and neurite extension. As co-factors of Lingo-1 signaling (Nogo receptor (NgR), With No Lysine (K) (WNK1) and Myelin transcription factor 1 (Myt1)) have been implicated in the genetics of schizophrenia, we explored for the first time the role of Lingo-1 signaling pathways in this disorder. Lingo-1 protein, together with its co-receptor and co-factor proteins NgR, tumor necrosis factor (TNF) receptor orphan Y (TROY), p75, WNK1 and Myt1, have never been explored in the pathogenesis of schizophrenia. We examined protein levels of Lingo-1, NgR, TROY, p75, WNK1, Myt1 and myelin basic protein (MBP) (as a marker of myelination) within the post-mortem dorsolateral prefrontal cortex (DLPFC) (37 schizophrenia patients versus 37 matched controls) and hippocampus (Cornu Ammonis, CA1 and CA3) (20 schizophrenia patients versus 20 matched controls from the same cohort). Both of these brain regions are highly disrupted in the schizophrenia pathophysiology. There were significant increases in Lingo-1 (P<0.001) and Myt1 (P=0.023) and a reduction in NgR (P<0.001) in the DLPFC in schizophrenia subjects compared with controls. There were also increases in both TROY (P=0.001) and WNK1 (P=0.011) in the CA1 of schizophrenia subjects and, in contrast to the DLPFC, there was an increase in NgR (P=0.006) in the CA3 of schizophrenia subjects compared with controls. No significant difference was reported for MBP levels (P>0.05) between the schizophrenia and control groups in the three tested regions. This is the first time that a study has shown altered Lingo-1 signaling in the schizophrenia brain. Our novel findings may present a direct application for the use of a Lingo-1 antagonist to complement current and future schizophrenia therapies.
SCZ Keywordsschizophrenia
3Prog. Neuropsychopharmacol. Biol. Psychiatry 2015 Dec 63: 91-7
TitleAlterations of p75 neurotrophin receptor and Myelin transcription factor 1 in the hippocampus of perinatal phencyclidine treated rats.
AbstractPostnatal administration of phencyclidine (PCP) in rodents causes major disturbances to neurological processes resulting in severe modifications to normal behavioral traits into adulthood. It is routinely used to model psychiatric disorders such as schizophrenia, producing many of the dysfunctional processes in the brain that are present in this devastating disorder, including elevated levels of apoptosis during neurodevelopment and disruptions to myelin and plasticity processes. Lingo-1 (or Leucine-rich repeat and immunoglobulin domain-containing protein) is responsible for negatively regulating neurite outgrowth and the myelination of axons. Recent findings using a postmortem human brain cohort showed that Lingo-1 signaling partners in the Nogo receptor (NgR)/p75/TNF receptor orphan Y (TROY) signaling complex, and downstream signaling partners With No Lysine (K) (WNK1) and Myelin transcription factor 1 (Myt1), play a significant part in schizophrenia pathophysiology. Here we have examined the implication of Lingo-1 and its signaling partners in a neurodevelopmental model of schizophrenia using PCP to determine if these pathways are altered in the hippocampus throughout different stages of neurodevelopment. Male Sprague-Dawley rats were injected subcutaneously with PCP (10mg/kg) or saline solution on postnatal days (PN) 7, 9, and 11. Rats (n=6/group) were sacrificed at PN12, 5weeks, or 14weeks. Relative expression levels of Lingo-1 signaling proteins were examined in the hippocampus of the treated rats. p75 and Myt1 were decreased (0.001?p?0.011) in the PCP treated rats at PN12. There were no significant changes in any of the tested proteins at 5weeks (p>0.05). At 14weeks, p75, TROY, and Myt1 were increased in the PCP treated rats (0.014?p?0.022). This is the first report of an alteration in Lingo-1 signaling proteins in the rat hippocampus, both directly after PCP treatment in early development and in adulthood. Based on our results, we propose that components of the Lingo-1 signaling pathways may be involved in the acute neurotoxicity induced by perinatal administration of PCP in rats early in development and suggest that this may have implications for the hippocampal deficits seen in schizophrenia.
SCZ Keywordsschizophrenia
4BBA Clin 2015 Jun 3: 36-43
TitleGenetic variants in Nogo receptor signaling pathways may be associated with early life adversity in schizophrenia susceptibility.
Abstractschizophrenia is a severe neuropsychiatric disorder thought to result from abnormal brain development. Nogo, an oligodendrocyte bound molecule, signals by binding to the Nogo receptor (NgR) located on axonal membranes. The NgR co-receptors include p75 neurotrophin receptor or TNF receptor orphan Y (TROY). Nogo signaling is responsible for central nervous system myelin regulation and neurite outgrowth during neurodevelopment, and plasticity in the mature brain.
We examined single nucleotide polymorphisms (SNPs) in NgR, p75, and TROY receptor genes and downstream signaling partner With No Lysine (K) (WNK1) and Myelin transcription factor 1-like (Myt1l) genes in an Australian case-control schizophrenia cohort (n = 268/group). High-throughput SNP genotyping was performed using the MassARRAY® genotyping assay.
Analysis revealed a significant association between the Myt1l SNP rs2304008 and female schizophrenia subjects. The WNK1 SNP rs1468326 and the Myt1l SNP rs3748988 showed significant associations with schizophrenia in subjects with a maternal mental history and in subjects who experienced childhood trauma respectively. Following Bonferroni correction, all significance was lost.
Despite the lack of positive findings in our population after correction for multiple testing, previous gene expression and association studies in schizophrenia suggest the implication of NgR signaling pathway genes in the etiology of schizophrenia remains topical and timely.
Further investigations will be necessary to fully assess the role of these genes in the pathophysiology of schizophrenia. However these genes may prove useful in further understanding the mechanism by which negative experiences early in life can affect myelin-related processes in the context of schizophrenia.
SCZ Keywordsschizophrenia