1Schizophr Bull 2009 Jan 35: 96-108
PMID19023125
TitleA genome-wide association study of schizophrenia using brain activation as a quantitative phenotype.
AbstractGenome-wide association studies (GWASs) are increasingly used to identify risk genes for complex illnesses including schizophrenia. These studies may require thousands of subjects to obtain sufficient power. We present an alternative strategy with increased statistical power over a case-control study that uses brain imaging as a quantitative trait (QT) in the context of a GWAS in schizophrenia.
Sixty-four subjects with chronic schizophrenia and 74 matched controls were recruited from the Functional Biomedical Informatics Research Network (FBIRN) consortium. Subjects were genotyped using the Illumina HumanHap300 BeadArray and were scanned while performing a Sternberg Item Recognition Paradigm in which they learned and then recognized target sets of digits in an functional magnetic resonance imaging protocol. The QT was the mean blood oxygen level-dependent signal in the dorsolateral prefrontal cortex during the probe condition for a memory load of 3 items.
Three genes or chromosomal regions were identified by having 2 single-nucleotide polymorphisms (SNPs) each significant at P < 10(-6) for the interaction between the imaging QT and the diagnosis (ROBO1-ROBO2, TNIK, and CTXN3-SLC12A2). Three other genes had a significant SNP at <10(-6) (POU3F2, TRAF, and GPC1). Together, these 6 genes/regions identified pathways involved in neurodevelopment and response to stress.
Combining imaging and genetic data from a GWAS identified genes related to forebrain development and stress response, already implicated in schizophrenic dysfunction, as affecting prefrontal efficiency. Although the identified genes require confirmation in an independent sample, our approach is a screening method over the whole genome to identify novel SNPs related to risk for schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
2Schizophr Bull 2009 Jan 35: 96-108
PMID19023125
TitleA genome-wide association study of schizophrenia using brain activation as a quantitative phenotype.
AbstractGenome-wide association studies (GWASs) are increasingly used to identify risk genes for complex illnesses including schizophrenia. These studies may require thousands of subjects to obtain sufficient power. We present an alternative strategy with increased statistical power over a case-control study that uses brain imaging as a quantitative trait (QT) in the context of a GWAS in schizophrenia.
Sixty-four subjects with chronic schizophrenia and 74 matched controls were recruited from the Functional Biomedical Informatics Research Network (FBIRN) consortium. Subjects were genotyped using the Illumina HumanHap300 BeadArray and were scanned while performing a Sternberg Item Recognition Paradigm in which they learned and then recognized target sets of digits in an functional magnetic resonance imaging protocol. The QT was the mean blood oxygen level-dependent signal in the dorsolateral prefrontal cortex during the probe condition for a memory load of 3 items.
Three genes or chromosomal regions were identified by having 2 single-nucleotide polymorphisms (SNPs) each significant at P < 10(-6) for the interaction between the imaging QT and the diagnosis (ROBO1-ROBO2, TNIK, and CTXN3-SLC12A2). Three other genes had a significant SNP at <10(-6) (POU3F2, TRAF, and GPC1). Together, these 6 genes/regions identified pathways involved in neurodevelopment and response to stress.
Combining imaging and genetic data from a GWAS identified genes related to forebrain development and stress response, already implicated in schizophrenic dysfunction, as affecting prefrontal efficiency. Although the identified genes require confirmation in an independent sample, our approach is a screening method over the whole genome to identify novel SNPs related to risk for schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
3Neuroimage 2010 Nov 53: 839-47
PMID20600988
TitleIdentifying gene regulatory networks in schizophrenia.
AbstractThe imaging genetics approach to studying the genetic basis of disease leverages the individual strengths of both neuroimaging and genetic studies by visualizing and quantifying the brain activation patterns in the context of genetic background. Brain imaging as an intermediate phenotype can help clarify the functional link among genes, the molecular networks in which they participate, and brain circuitry and function. Integrating genetic data from a genome-wide association study (GWAS) with brain imaging as a quantitative trait (QT) phenotype can increase the statistical power to identify risk genes. A QT analysis using brain imaging (DLPFC activation during a working memory task) as a quantitative trait has identified unanticipated risk genes for schizophrenia. Several of these genes (RSRC1, ARHGAP18, ROBO1-ROBO2, GPC1, TNIK, and CTXN3-SLC12A2) have functions related to progenitor cell proliferation, migration, and differentiation, cytoskeleton reorganization, axonal connectivity, and development of forebrain structures. These genes, however, do not function in isolation but rather through gene regulatory networks. To obtain a deeper understanding how the GWAS-identified genes participate in larger gene regulatory networks, we measured correlations among transcript levels in the mouse and human postmortem tissue and performed a gene set enrichment analysis (GSEA) that identified several microRNA associated with schizophrenia (448, 218, 137). The results of such computational approaches can be further validated in animal experiments in which the networks are experimentally studied and perturbed with specific compounds. Glypican 1 and FGF17 mouse models for example, can be used to study such gene regulatory networks. The model demonstrates epistatic interactions between FGF and glypican on brain development and may be a useful model of negative symptom schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
4J. Neurosci. 2011 Jul 31: 11088-95
PMID21795557
TitleExpression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia.
AbstractGABA signaling molecules are critical for both human brain development and the pathophysiology of schizophrenia. We examined the expression of transcripts derived from three genes related to GABA signaling [GAD1 (GAD67 and GAD25), SLC12A2 (NKCC1), and SLC12A5 (KCC2)] in the prefrontal cortex (PFC) and hippocampal formation of a large cohort of nonpsychiatric control human brains (n = 240) across the lifespan (from fetal week 14 to 80 years) and in patients with schizophrenia (n = 30-31), using quantitative RT-PCR. We also examined whether a schizophrenia risk-associated promoter SNP in GAD1 (rs3749034) is related to expression of these transcripts. Our studies revealed that development and maturation of both the PFC and hippocampal formation are characterized by progressive switches in expression from GAD25 to GAD67 and from NKCC1 to KCC2. Previous studies have demonstrated that the former leads to GABA synthesis, and the latter leads to switching from excitatory to inhibitory neurotransmission. In the hippocampal formation, GAD25/GAD67 and NKCC1/KCC2 ratios are increased in patients with schizophrenia, reflecting a potentially immature GABA physiology. Remarkably, GAD25/GAD67 and NKCC1/KCC2 expression ratios are associated with rs3749034 genotype, with risk alleles again predicting a relatively less mature pattern. These findings suggest that abnormalities in GABA signaling critical to brain development contribute to genetic risk for schizophrenia.
SCZ Keywordsschizophrenia, schizophrenic
5Behav Brain Funct 2012 -1 8: 27
PMID22643131
TitleAssociation of CTXN3-SLC12A2 polymorphisms and schizophrenia in a Thai population.
AbstractA genome-wide association study (GWAS) combined with brain imaging as a quantitative trait analysis revealed that the SNPs near CTXN3-SLC12A2 region were related to forebrain development and stress response which involved in schizophrenia. In the present study, the SNPs in this region were analyzed for association with schizophrenia in a Thai population.
A total of 115 schizophrenia and 173 unrelated normal controls with mean age of 37.87?±?11.8 and 42.81?±?6.0 years, respectively, were included in this study. Genotyping was performed using polymerase chain reaction and high-resolution melting (HRM) analysis. The difference in genotype distribution between patient and control was assessed by Chi-square test of the SPSS software.
We found a significant association between the GWAS-discovered SNP, rs245178, with the risk of schizophrenia in the Thai population [P?=?0.006, odds ratio for the minor G allele: 0.62(0.46-0.83)]. Additionally, another potential SNP, rs698172, which was in moderate linkage disequilibrium with rs245178, also showed strong association with schizophrenia [P?=?0.003, odds ratio for minor T allele: 0.61(0.46-0.82)]. This association remained significant at 5% level after the Bonferroni correction for multiple testing.
This study shows that two SNPs in intergenic of the CTXN3 and SLC12A2 genes, rs245178 and rs698172, are associated with risk of schizophrenia in Thai population. Further study is required for clarification the role of genetic variation around these SNPs in expression pattern of the CTXN3 and SLC12A2 genes, which may be involved in schizophrenia pathogenesis.
SCZ Keywordsschizophrenia, schizophrenic
6J. Clin. Invest. 2013 Jul 123: 2961-4
PMID23921125
TitleDISC1 and SLC12A2 interaction affects human hippocampal function and connectivity.
AbstractHippocampal development is coordinated by both extracellular factors like GABA neurotransmission and intracellular components like DISC1. We previously reported that SLC12A2-dependent GABA depolarization and DISC1 coregulate hippocampal neuronal development, and 2 SNPs in these genes linked to mRNA expression interactively increase schizophrenia risk. Using functional MRI, we now confirm this biological interaction in vivo by showing in 2 independent samples of healthy individuals (total N = 349) that subjects homozygous for both risk alleles evince dramatically decreased hippocampal area activation (Cohen's d = 0.78)and connectivity (d = 0.57) during a recognition memory task. These data highlight the importance of epistatic models in understanding genetic association with complex brain phenotypes.
SCZ Keywordsschizophrenia, schizophrenic
7J. Neurosci. 2014 Apr 34: 4929-40
PMID24695712
TitleCharacteristics of the cation cotransporter NKCC1 in human brain: alternate transcripts, expression in development, and potential relationships to brain function and schizophrenia.
AbstractEarly in development, GABA, an inhibitory neurotransmitter in adults, is excitatory. NKCC1 (SLC12A2) encodes one of two cation chloride cotransporters mediating the conversion of GABA from excitatory to inhibitory. Using 3' and 5' RACE and PCR, we verified previously characterized alternative transcripts of NKCC1a (1-27) and NKCC1b (1-27(?21)), identified new NKCC1 transcripts, and explored their expression patterns during human prefrontal cortical development. A novel ultra-short transcript (1-2a) was expressed preferentially in the fetus. Expression of NKCC1b and 1-2a were decreased in schizophrenia compared with controls (NKCC1b: 0.8-fold decrease, p = 0.013; 1-2a: 0.8-fold decrease, p = 0.006). Furthermore, the expression of NKCC1b was associated with NKCC1 polymorphism rs3087889. The minor allele at rs3087889, associated with reduced NKCC1b expression (homozygous for major allele: N = 37; homozygous for minor allele: N = 15; 1.5-fold decrease; p < 0.01), was also associated with a modest increase in schizophrenia risk in a case-control sample (controls: N = 435; cases: N = 397, OR = 1.5). This same allele was then found associated with cognitive (n = 369) and fMRI (n = 313) intermediate phenotypes associated with schizophrenia-working memory (Cohen's d = 0.35), global cognition or g (d = 0.18), and prefrontal inefficiency (d = 0.36) as measured by BOLD fMRI during a working memory task. Together, these preclinical and clinical results suggest that variation in NKCC1 may increase risk for schizophrenia via alterations of mRNA expression at the molecular level and impairment of optimal prefrontal function at the macro or systems level.
SCZ Keywordsschizophrenia, schizophrenic
8J Psychiatr Res 2016 Jun 77: 22-6
PMID26955005
TitleGain-of-function missense variant in SLC12A2, encoding the bumetanide-sensitive NKCC1 cotransporter, identified in human schizophrenia.
AbstractPerturbations of ?-aminobutyric acid (GABA) neurotransmission in the human prefrontal cortex have been implicated in the pathogenesis of schizophrenia (SCZ), but the mechanisms are unclear. NKCC1 (SLC12A2) is a Cl(-)-importing cation-Cl(-) cotransporter that contributes to the maintenance of depolarizing GABA activity in immature neurons, and variation in SLC12A2 has been shown to increase the risk for schizophrenia via alterations of NKCC1 mRNA expression. However, no disease-causing mutations or functional variants in NKCC1 have been identified in human patients with SCZ. Here, by sequencing three large French-Canadian (FC) patient cohorts of SCZ, autism spectrum disorders (ASD), and intellectual disability (ID), we identified a novel heterozygous NKCC1 missense variant (p.Y199C) in SCZ. This variant is located in an evolutionarily conserved residue in the critical N-terminal regulatory domain and exhibits high predicted pathogenicity. No NKCC1 variants were detected in ASD or ID, and no KCC3 variants were identified in any of the three neurodevelopmental disorder cohorts. Functional experiments show Y199C is a gain-of-function variant, increasing Cl(-)-dependent and bumetanide-sensitive NKCC1 activity even in conditions in which the transporter is normally functionally silent (hypotonicity). These data are the first to describe a functional missense variant in SLC12A2 in human SCZ, and suggest that genetically encoded dysregulation of NKCC1 may be a risk factor for, or contribute to the pathogenesis of, human SCZ.
SCZ Keywordsschizophrenia, schizophrenic