1Schizophr. Res. 2005 Oct 78: 337-8
PMID15961286
TitleMutation in the vesicular monoamine gene, SLC18A1, associated with schizophrenia.
Abstract-1
SCZ Keywordsschizophrenia, schizophrenics
2Behav Brain Funct 2006 -1 2: 39
PMID17134514
TitleAssociation study of the vesicular monoamine transporter 1 (VMAT1) gene with schizophrenia in a Japanese population.
AbstractVesicular monoamine transporters (VMATs) mediate accumulation of monoamines such as serotonin, dopamine, adrenaline, and noradrenaline from the cytoplasm into storage organelles. The VMAT1 (alternatively solute carrier family 18: SLC18A1) regulates such biogenic amines in neuroendocrine systems. The VMAT1 gene maps to chromosome 8p21.3, a locus with strong evidence of linkage with schizophrenia. A recent study reported that a non-synonymous single nucleotide polymorphism (SNP) of the gene (Pro4Thr) was associated with schizophrenia.
We attempted to replicate this finding in a Japanese sample of 354 schizophrenics and 365 controls. In addition, we examined 3 other non-synonymous SNPs (Thr98Ser, Thr136Ile, and Val392Leu). Genotyping was performed by the TaqMan allelic discrimination assay.
There was no significant difference in genotype or allele distribution of the three SNPs of Pro4Thr, Thr136Ile, or Val392Leu between patients and controls. There was, however, a significant difference in genotype and allele distributions for the Thr98Ser polymorphism between the two groups (P = 0.01 for genotype and allele). When sexes were examined separately, significant differences were observed in females (P = 0.006 for genotype, P = 0.003 for allele), but not in males. The Thr98 allele was more common in female patients than in female controls (odds ratio 1.69, 95% CI 1.19-2.40, P = 0.003). Haplotype-based analyses also provided evidence for a significant association in females.
We failed to replicate the previously reported association of Pro4Thr of the VMAT1 gene with schizophrenia. However, we obtained evidence for a possible role of the Thr98Ser in giving susceptibility to schizophrenia in women.
SCZ Keywordsschizophrenia, schizophrenics
3Behav Brain Funct 2006 -1 2: 39
PMID17134514
TitleAssociation study of the vesicular monoamine transporter 1 (VMAT1) gene with schizophrenia in a Japanese population.
AbstractVesicular monoamine transporters (VMATs) mediate accumulation of monoamines such as serotonin, dopamine, adrenaline, and noradrenaline from the cytoplasm into storage organelles. The VMAT1 (alternatively solute carrier family 18: SLC18A1) regulates such biogenic amines in neuroendocrine systems. The VMAT1 gene maps to chromosome 8p21.3, a locus with strong evidence of linkage with schizophrenia. A recent study reported that a non-synonymous single nucleotide polymorphism (SNP) of the gene (Pro4Thr) was associated with schizophrenia.
We attempted to replicate this finding in a Japanese sample of 354 schizophrenics and 365 controls. In addition, we examined 3 other non-synonymous SNPs (Thr98Ser, Thr136Ile, and Val392Leu). Genotyping was performed by the TaqMan allelic discrimination assay.
There was no significant difference in genotype or allele distribution of the three SNPs of Pro4Thr, Thr136Ile, or Val392Leu between patients and controls. There was, however, a significant difference in genotype and allele distributions for the Thr98Ser polymorphism between the two groups (P = 0.01 for genotype and allele). When sexes were examined separately, significant differences were observed in females (P = 0.006 for genotype, P = 0.003 for allele), but not in males. The Thr98 allele was more common in female patients than in female controls (odds ratio 1.69, 95% CI 1.19-2.40, P = 0.003). Haplotype-based analyses also provided evidence for a significant association in females.
We failed to replicate the previously reported association of Pro4Thr of the VMAT1 gene with schizophrenia. However, we obtained evidence for a possible role of the Thr98Ser in giving susceptibility to schizophrenia in women.
SCZ Keywordsschizophrenia, schizophrenics
4Neuropsychopharmacology 2006 Dec 31: 2739-47
PMID16936705
TitleVariations in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) are associated with bipolar i disorder.
AbstractThe vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) maps to the shared bipolar disorder (BPD)/schizophrenia (SZ) susceptibility locus on chromosome 8p21. Vesicular monoamine transporters are involved in transport of monoamine neurotransmitters which have been postulated to play a relevant role in the etiology of BPD and/or SZ. Variations in the VMAT1 gene might affect transporter function and/or expression and might be involved in the etiology of BPD and/or SZ. Genotypes of 585 patients with BPD type I and 563 control subjects were obtained for three missense single nucleotide polymorphisms (SNPs) (Thr4Pro, Thr98Ser, Thr136Ile) and four non-coding SNPs (rs988713, rs2279709, rs3735835, rs1497020). All cases and controls were of European descent. Allele frequencies differed significantly for the potential functional polymorphism Thr136Ser between BPD patients and controls (p=0.003; df=1; OR=1.34; 95% CI: 1.11-1.62). Polymorphisms in the promoter region (rs988713: p=0.005, df=1; OR=1.31; 95% CI: 1.09-1.59) and intron 8 (rs2279709: p=0.039, df=1; OR=0.84; 95% CI: 0.71-0.99) were also associated with disease. Expression analysis confirmed that VMAT1 is expressed in human brain at the mRNA and protein level. Results suggest that variations in the VMAT1 gene may confer susceptibility to BPD in patients of European descent. Additional studies are necessary to confirm this effect and to elucidate the role of VMAT1 in central nervous system physiology.
SCZ Keywordsschizophrenia, schizophrenics
5Neuropsychobiology 2008 -1 57: 55-60
PMID18451639
TitleAssociation between polymorphisms in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) on chromosome 8p and schizophrenia.
AbstractLinkage studies have suggested a susceptibility locus for schizophrenia (SZ) exists on chromosome 8p21-22. The vesicular monoamine transporter 1 gene (VMAT1), also known as SLC18A1, maps to this SZ susceptibility locus. Vesicular monoamine transporters are involved in the presynaptic vesicular packaging of monoamine neurotransmitters, which have been postulated to play a role in the etiology of SZ. Variations in the VMAT1 gene might affect transporter function and/or expression, and might be involved in the etiology of SZ. Genotypes of 62 patients with SZ and 188 control subjects were obtained for 4 missense single nucleotide polymorphisms (Thr4Pro, Thr98Ser, Thr136Ile, Val392Leu) and 2 noncoding single nucleotide polymorphisms (rs988713, rs2279709). All cases and controls were of European descent. The frequency of the minor allele of the Thr4Pro polymorphism was significantly increased in SZ patients when compared to controls (p = 0.0140; d.f. = 1; OR = 1.69; 95% CI = 1.11-2.57). Assuming a recessive mode of inheritance, the frequency of homozygote 4Pro carriers was significantly increased in the SZ patients when compared to controls (24 vs. 8%, respectively; p = 0.0006; d.f. = 1; OR = 3.74; 95% CI = 1.703-8.21). Haplotype analysis showed nominal significance for an individual risk haplotype (p = 0.013); however, after permutation correction, the global p value did not attain a statistically significant level (p = 0.07). Results suggest that variations in the VMAT1 gene may confer susceptibility to SZ in patients of European descent. Further studies are necessary to confirm this effect, and to elucidate the role of VMAT1 in central nervous system physiology and possible involvement in the genetic origins of SZ.
SCZ Keywordsschizophrenia, schizophrenics
6Neurosci. Lett. 2008 Mar 434: 41-5
PMID18249496
TitleAssociation between variation in the vesicular monoamine transporter 1 gene on chromosome 8p and anxiety-related personality traits.
AbstractVesicular monoamine transporters are involved in the presynaptic packaging of norepinephrine, dopamine and serotonin into storage vesicles. The vesicles release their content upon arrival of an action potential into the synaptic cleft. Dysregulation of monoaminergic neurotransmission has been long postulated to play a relevant role in the etiology of neuropsychiatric disorders. The gene encoding the vesicular monoamine transporter 1 (VMAT1/SLC18A1) maps to chromosome 8p21, a region where several linkage peaks overlap between schizophrenia, bipolar disorder and anxiety-related personality traits. In this study, we tested the hypothesis that the missence variation Thr136Ile in the VMAT1/SLC18A1 gene is associated with anxiety-related personality traits. We tested a total of 337 unrelated subjects of German descent (167 male, 170 female). All participants were carefully screened for psychiatric disorders. The self-report State-Trait Anxiety Inventory (STAI) was completed by all subjects. Genotypes were obtained for the Thr136Ile (rs1390938) variation in the VMAT1 gene for all subjects. Genotype effects on personality variables were computed with MANOVA including age as a co-variant and gender as independent factor (MANCOVA). Results show that STAI scores were significantly affected by genotype (F=3.108; d.f.=4,331; p=0.015) and age (F=7.233; d.f.=2,331; p=0.001) but not by gender. A gender-by-genotype effect was observed for both the STAI state (p=0.052) and trait score (p=0.035). Dissection of the group by gender and subsequent contrast analysis of the genotype effects performed within the female group showed significant results (STAI state: Thr/Ile vs. Ile/Ile: T=4.408, p=0.0004; STAI trait: Thr/Ile vs. Ile/Ile: T=3.074, p=0.009) but not in the male group. Our findings support the hypothesis that anxiety-related personality traits are associated with variation in the VMAT1/SLC18A1 gene.
SCZ Keywordsschizophrenia, schizophrenics
7Mol. Psychiatry 2009 Jun 14: 563-89
PMID19204725
TitleChromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer.
AbstractDefects in genetic and developmental processes are thought to contribute susceptibility to autism and schizophrenia. Presumably, owing to etiological complexity identifying susceptibility genes and abnormalities in the development has been difficult. However, the importance of genes within chromosomal 8p region for neuropsychiatric disorders and cancer is well established. There are 484 annotated genes located on 8p; many are most likely oncogenes and tumor-suppressor genes. Molecular genetics and developmental studies have identified 21 genes in this region (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LDL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) that are most likely to contribute to neuropsychiatric disorders (schizophrenia, autism, bipolar disorder and depression), neurodegenerative disorders (Parkinson's and Alzheimer's disease) and cancer. Furthermore, at least seven nonprotein-coding RNAs (microRNAs) are located at 8p. Structural variants on 8p, such as copy number variants, microdeletions or microduplications, might also contribute to autism, schizophrenia and other human diseases including cancer. In this review, we consider the current state of evidence from cytogenetic, linkage, association, gene expression and endophenotyping studies for the role of these 8p genes in neuropsychiatric disease. We also describe how a mutation in an 8p gene (Fgf17) results in a mouse with deficits in specific components of social behavior and a reduction in its dorsomedial prefrontal cortex. We finish by discussing the biological connections of 8p with respect to neuropsychiatric disorders and cancer, despite the shortcomings of this evidence.
SCZ Keywordsschizophrenia, schizophrenics
8Methods Mol. Biol. 2010 -1 637: 165-80
PMID20419435
TitleGenetic variants in the vesicular monoamine transporter 1 (VMAT1/SLC18A1) and neuropsychiatric disorders.
AbstractVesicular monoamine transporters (VMATs) are involved in the presynaptic packaging of monoaminergic neurotransmitters into storage granules. Upon an action potential, vesicles release their contents into the synaptic cleft via exocytosis. Since insufficient or excess release of neurotransmitter might alter neurochemical function and neurotransmission, VMATs are an important target for biological research in neuropsychiatric disorders. Two structurally related but pharmacologically distinct VMATs have been identified, encoded by separate genes, VMAT1 (SLC18A1) and VMAT2 (SLC18A2). Although it was reported initially that only VMAT2 is expressed in brain, recent studies indicate that VMAT1 is also expressed in brain, thus making both transporters plausible candidate genes for neuropsychiatric disorders. The gene encoding VMAT1 is located on chromosome 8p21, a region implicated in linkage studies of schizophrenia, bipolar disorder, and anxiety-related phenotypes. Furthermore, several recent genetic case-control studies have documented an association between common missense variations in the VMAT1 gene and susceptibility to bipolar disorder and schizophrenia. Variations in the VMAT1 gene might affect transporter function and might be involved in the etiology of neuropsychiatric disorders. This chapter describes methods for genotyping three missense polymorphisms implicated in neuropsychiatric disorders (Thr4Pro, Thr98Ser, Thr136Ile) using TaqMan-based PCR and standard PCR approaches.
SCZ Keywordsschizophrenia, schizophrenics
9Med Res Rev 2011 Jul 31: 483-519
PMID20135628
TitleVesicular monoamine transporters: structure-function, pharmacology, and medicinal chemistry.
AbstractVesicular monoamine transporters (VMAT) are responsible for the uptake of cytosolic monoamines into synaptic vesicles in monoaminergic neurons. Two closely related VMATs with distinct pharmacological properties and tissue distributions have been characterized. VMAT1 is preferentially expressed in neuroendocrine cells and VMAT2 is primarily expressed in the CNS. The neurotoxicity and addictive properties of various psychostimulants have been attributed, at least partly, to their interference with VMAT2 functions. The quantitative assessment of the VMAT2 density by PET scanning has been clinically useful for early diagnosis and monitoring of the progression of Parkinson's and Alzheimer's diseases and drug addiction. The classical VMAT2 inhibitor, tetrabenazine, has long been used for the treatment of chorea associated with Huntington's disease in the United Kingdom, Canada, and Australia, and recently approved in the United States. The VMAT2 imaging may also be useful for exploiting the onset of diabetes mellitus, as VMAT2 is also expressed in the ?-cells of the pancreas. VMAT1 gene SLC18A1 is a locus with strong evidence of linkage with schizophrenia and, thus, the polymorphic forms of the VMAT1 gene may confer susceptibility to schizophrenia. This review summarizes the current understanding of the structure-function relationships of VMAT2, and the role of VMAT2 on addiction and psychostimulant-induced neurotoxicity, and the therapeutic and diagnostic applications of specific VMAT2 ligands. The evidence for the linkage of VMAT1 gene with schizophrenia and bipolar disorder I is also discussed.
SCZ Keywordsschizophrenia, schizophrenics
10Ann Neurosci 2014 Oct 21: 138-43
PMID25452674
TitleStudy of five novel non-synonymous polymorphisms in human brain-expressed genes in a Colombian sample.
AbstractNon-synonymous single nucleotide polymorphisms (nsSNPs) in brain-expressed genes represent interesting candidates for genetic research in neuropsychiatric disorders.
To study novel nsSNPs in brain-expressed genes in a sample of Colombian subjects.
We applied an approach based on in silico mining of available genomic data to identify and select novel nsSNPs in brain-expressed genes. We developed novel genotyping assays, based in allele-specific PCR methods, for these nsSNPs and genotyped them in 171 Colombian subjects.
Five common nsSNPs (rs6855837; p.Leu395Ile, rs2305160; p.Thr394Ala, rs10503929; p.Met289Thr, rs2270641; p.Thr4Pro and rs3822659; p.Ser735Ala) were studied, located in the CLOCK, NPAS2, NRG1, SLC18A1 and WWC1 genes. We reported allele and genotype frequencies in a sample of South American healthy subjects. There is previous experimental evidence, arising from genome-wide expression and association studies, for the involvement of these genes in several neuropsychiatric disorders and endophenotypes, such as schizophrenia, mood disorders or memory performance.
Frequencies for these nsSNPSs in the Colombian samples varied in comparison to different HapMap populations. Future study of these nsSNPs in brain-expressed genes, a synaptogenomics approach, will be important for a better understanding of neuropsychiatric diseases and endophenotypes in different populations.
SCZ Keywordsschizophrenia, schizophrenics