Abstract | Noncoding variants in the human MIR137 gene locus increase schizophrenia risk with genome-wide significance. However, the functional consequence of these risk alleles is unknown. Here we examined induced human neurons harboring the minor alleles of four disease-associated single nucleotide polymorphisms in MIR137. We observed increased MIR137 levels compared to those in major allele-carrying cells. microRNA-137 gain of function caused downregulation of the presynaptic target genes complexin-1 (Cplx1), Nsf and synaptotagmin-1 (SYT1), leading to impaired vesicle release. In vivo, miR-137 gain of function resulted in changes in synaptic vesicle pool distribution, impaired induction of mossy fiber long-term potentiation and deficits in hippocampus-dependent learning and memory. By sequestering endogenous miR-137, we were able to ameliorate the synaptic phenotypes. Moreover, reinstatement of SYT1 expression partially restored synaptic plasticity, demonstrating the importance of SYT1 as a miR-137 target. Our data provide new insight into the mechanism by which miR-137 dysregulation can impair synaptic plasticity in the hippocampus. |
Abstract | Multiple biological processes throughout development require intracellular vesicular trafficking, where the SNARE (soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptors) complex plays a major role. The core proteins forming the SNARE complex are SNAP-25 (synaptosomal-associated protein 25), VAMP (vesicle-associated membrane protein) and Syntaxins, besides its regulatory proteins, such as Synaptotagmin. Genes encoding these proteins (SNAP25, VAMP1, VAMP2, STX1A, SYT1 and SYT2) have been studied in relation to psychiatric disorders susceptibility. Here, we review physiological aspects of SNARE complex and genetic association results reported for attention deficit hyperactivity disorder, both in children and adults, autism spectrum disorders, major depressive disorder, bipolar disorder and schizophrenia. Moreover, we included findings from expression, pharmacogenetics and animal model studies regarding these clinical phenotypes. The overall scenario depicted here suggests that the SNARE complex may exert distinct roles throughout development, with age-specific effects of genetic variants in psychiatric disorders. Such perspective should be considered in future studies regarding SNARE complex genes. |