1Neuropharmacology 2008 Oct 55: 743-54
PMID18602930
TitleNeurochemical and behavioral profiling of the selective GlyT1 inhibitors ALX5407 and LY2365109 indicate a preferential action in caudal vs. cortical brain areas.
AbstractSelective inhibitors of the glycine transporter 1 (GlyT1) have been implicated in central nervous system disorders related to hypoglutamatergic function such as schizophrenia. The selective GlyT1 inhibitors ALX5407 (NFPS) and LY2365109 {[2-(4-benzo[1,3]dioxol-5-yl-2-TERT-butylphenoxy)ethyl]-methylamino}-acetic acid increased cerebrospinal fluid levels of glycine and potentiated NMDA-induced increases in dialysate levels of neurotransmitters in the prefrontal cortex (PFC) and the striatum. However, higher doses produced both stimulatory and inhibitory effects on motor performance and impaired respiration, suggesting significant involvement of cerebellar and brain stem areas. A dual probe microdialysis study showed that ALX5407 transiently elevated extracellular levels of glycine in the PFC with more sustained increases in the cerebellum. In support of these findings, immuno-staining with pan-GlyT1 and GlyT1a antibodies showed a higher abundance of immunoreactivity in the brain stem/cerebellum as compared to the frontal cortical/hippocampal brain areas in four different species studied, including the mouse, rat, monkey and human. In addition, the inhibitory effects of ALX5407 on cerebellar levels of cGMP in the mouse could be reversed by the glycine A receptor antagonist strychnine but not the glycine B receptor antagonist L-701324. We propose that the adverse events seen with higher doses of ALX5407 and LY2365109 are the result of high GlyT1 inhibitory activity in caudal areas of the brain with sustained elevations of extracellular glycine. High levels of glycine in these brain areas may result in activation of strychnine-sensitive glycine A receptors that are inhibitory on both motor activity and critical brain stem functions such as respiration.
SCZ Keywordsschizophrenia
2Brain Res. Bull. 2009 Apr 79: 46-52
PMID19041695
TitleSkin fibroblast model to study an impaired glutathione synthesis: consequences of a genetic polymorphism on the proteome.
AbstractAn impaired glutathione (GSH) synthesis was observed in several multifactorial diseases, including schizophrenia and myocardial infarction. Genetic studies revealed an association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the catalytic subunit (GCLC) of the glutamate cysteine ligase (GCL). Disease-associated genotypes of this polymorphism correlated with a decrease in GCLC protein expression, GCL activity and GSH content. To clarify consequences of a decreased GCL activity at the proteome level, three schizophrenia patients and three controls have been selected based on the GCLC GAG TNR polymorphism. Fibroblast cultures were obtained by skin biopsy and were challenged with TERT-butylhydroquinone (t-BHQ), a substance known to induce oxidative stress. Proteome changes were analyzed by two dimensional gel electrophoresis (2-DE) and results revealed 10 spots that were upregulated in patients following t-BHQ treatment, but not in controls. Nine corresponding proteins could be identified by MALDI mass spectrometry and these proteins are involved in various cellular functions, including energy metabolism, oxidative stress response, and cytoskeletal reorganization. In conclusion, skin fibroblasts of subjects with an impaired GSH synthesis showed an altered proteome reaction in response to oxidative stress. Furthermore, the study corroborates the use of fibroblasts as an additional mean to study vulnerability factors of psychiatric diseases.
SCZ Keywordsschizophrenia
3J. Neurochem. 2009 Mar 108: 1410-22
PMID19183254
TitleCurcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit.
AbstractA decrease in GSH levels, the main redox regulator, can be observed in neurodegenerative diseases as well as in schizophrenia. In search for substances able to increase GSH, we evaluated the ability of curcumin (polyphenol), quercetin (flavonoid), and TERT-butylhydroquinone (tBHQ) to up-regulate GSH-synthesizing enzymes. The gene expression, activity, and product levels of these enzymes were measured in cultured neurons and astrocytes. In astrocytes, all substances increased GSH levels and the activity of the rate-limiting synthesizing enzyme, glutamate cysteine ligase (GCL). In neurons, curcumin and to a lesser extent tBHQ increased GCL activity and GSH levels, while quercetin decreased GSH and led to cell death. In the two cell types, the gene that showed the greatest increase in its expression was the one coding for the modifier subunit of GCL (GCLM). The increase in mRNA levels of GCLM was 3 to 7-fold higher than that of the catalytic subunit. In astrocytes from GCLM-knock-out mice showing low GSH (-80%) and low GCL activity (-50%), none of the substances succeeded in increasing GSH synthesis. Our results indicate that GCLM is essential for the up-regulation of GCL activity induced by curcumin, quercetin and tBHQ.
SCZ Keywordsschizophrenia
4PLoS ONE 2011 -1 6: e22875
PMID21829542
TitleAltered glycogen metabolism in cultured astrocytes from mice with chronic glutathione deficit; relevance for neuroenergetics in schizophrenia.
AbstractNeurodegenerative and psychiatric disorders including Alzheimer's, Parkinson's or Huntington's diseases and schizophrenia have been associated with a deficit in glutathione (GSH). In particular, a polymorphism in the gene of glutamate cysteine ligase modulatory subunit (GCLM) is associated with schizophrenia. GSH is the most important intracellular antioxidant and is necessary for the removal of reactive by-products generated by the utilization of glucose for energy supply. Furthermore, glucose metabolism through the pentose phosphate pathway is a major source of NADPH, the cofactor necessary for the regeneration of reduced glutathione. This study aims at investigating glucose metabolism in cultured astrocytes from GCLM knockout mice, which show decreased GSH levels. No difference in the basal metabolism of glucose was observed between wild-type and knockout cells. In contrast, glycogen levels were lower and its turnover was higher in knockout astrocytes. These changes were accompanied by a decrease in the expression of the genes involved in its synthesis and degradation, including the protein targeting to glycogen. During an oxidative challenge induced by TERT-Butylhydroperoxide, wild-type cells increased their glycogen mobilization and glucose uptake. However, knockout astrocytes were unable to mobilize glycogen following the same stress and they could increase their glucose utilization only following a major oxidative insult. Altogether, these results show that glucose metabolism and glycogen utilization are dysregulated in astrocytes showing a chronic deficit in GSH, suggesting that alterations of a fundamental aspect of brain energy metabolism is caused by GSH deficit and may therefore be relevant to metabolic dysfunctions observed in schizophrenia.
SCZ Keywordsschizophrenia
5J. Med. Chem. 2013 Nov 56: 9199-221
PMID24138311
TitleA structure-activity analysis of biased agonism at the dopamine D2 receptor.
AbstractBiased agonism offers an opportunity for the medicinal chemist to discover pathway-selective ligands for GPCRs. A number of studies have suggested that biased agonism at the dopamine D2 receptor (D2R) may be advantageous for the treatment of neuropsychiatric disorders, including schizophrenia. As such, it is of great importance to gain insight into the SAR of biased agonism at this receptor. We have generated SAR based on a novel D2R partial agonist, TERT-butyl (trans-4-(2-(3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)carbamate (4). This ligand shares structural similarity to cariprazine (2), a drug awaiting FDA approval for the treatment of schizophrenia, yet displays a distinct bias toward two different signaling end points. We synthesized a number of derivatives of 4 with subtle structural modifications, including incorporation of cariprazine fragments. By combining pharmacological profiling with analytical methodology to identify and to quantify bias, we have demonstrated that efficacy and biased agonism can be finely tuned by minor structural modifications to the head group containing the TERTiary amine, a tail group that extends away from this moiety, and the orientation and length of a spacer region between these two moieties.
SCZ Keywordsschizophrenia
6Neuropharmacology 2013 Jul 70: 218-27
PMID23376711
TitleRole of the 5-HT?A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice.
AbstractThe 5-HT?A receptor mediates the effects of serotonergic hallucinogens and may play a role in the pathophysiology of certain psychiatric disorders, including schizophrenia. Given these findings, there is a need for animal models to assess the behavioral effects of 5-HT?A receptor activation. Our previous studies demonstrated that the phenylalkylamine hallucinogen and 5-HT?A/?C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) produces dose-dependent effects on locomotor activity in C57BL/6J mice, increasing activity at low to moderate doses and reducing activity at high doses. DOI did not increase locomotor activity in 5-HT?A knockout mice, indicating the effect is a consequence of 5-HT?A receptor activation. Here, we tested a series of phenylalkylamine hallucinogens in C57BL/6J mice using the Behavioral Pattern Monitor (BPM) to determine whether these compounds increase locomotor activity by activating the 5-HT?A receptor. Low doses of mescaline, 2,5-dimethoxy-4-ethylamphetamine (DOET), 2,5-dimethoxy-4-propylamphetamine (DOPR), 2,4,5-trimethoxyamphetamine (TMA-2), and the conformationally restricted phenethylamine (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine (TCB-2) increased locomotor activity. By contrast, the non-hallucinogenic phenylalkylamine 2,5-dimethoxy-4-TERT-butylamphetamine (DOTB) did not alter locomotor activity at any dose tested (0.1-10 mg/kg i.p.). The selective 5-HT?A antagonist M100907 blocked the locomotor hyperactivity induced by mescaline and TCB-2. Similarly, mescaline and TCB-2 did not increase locomotor activity in 5-HT?A knockout mice. These results confirm that phenylalkylamine hallucinogens increase locomotor activity in mice and demonstrate that this effect is mediated by 5-HT?A receptor activation. Thus, locomotor hyperactivity in mice can be used to assess phenylalkylamines for 5-HT?A agonist activity and hallucinogen-like behavioral effects. These studies provide additional support for the link between 5-HT?A activation and hallucinogenesis.
SCZ Keywordsschizophrenia
7Neuropharmacology 2013 Jan 64: 224-39
PMID22884720
TitleIn vitro characterisation of the novel positive allosteric modulators of the mGlu? receptor, LSN2463359 and LSN2814617, and their effects on sleep architecture and operant responding in the rat.
AbstractThe demonstrated functional interaction of metabotropic glutamate 5 (mGlu?) receptors with N-methyl-d-aspartate (NMDA) receptors has prompted speculation that their activation may offer a potential treatment for aspects of schizophrenia. Development of selective mGlu? agonists has been difficult, but several different positive allosteric modulator (PAM) molecules have now been identified. This study describes two novel mGlu? PAMs, LSN2463359 (N-(1-methylethyl)-5-(pyridin-4-ylethynyl)pyridine-2-carboxamide) and LSN2814617 [(7S)-3-TERT-butyl-7-[3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl]-5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-A]pyridine], which are useful tools for this field of research. Both compounds are potent and selective potentiators of human and rat mGlu? receptors in vitro, displaying curve shift ratios of two to three fold in the concentration-response relationship to glutamate or the glutamate receptor agonist, DHPG, with no detectable intrinsic agonist properties. Both compounds displaced the mGlu? receptor antagonist radioligand, [³H]MPEP in vitro and, following oral administration reached brain concentrations sufficient to occupy hippocampal mGlu? receptors as measured in vivo by dose-dependent displacement from the hippocampus of intravenously administered MPEPy. In vivo EEG studies demonstrated that these mGlu? PAMs have marked wake-promoting properties but little in the way of rebound hypersomnolence. In contrast, the previously described mGlu? PAMs CDPPB and ADX47273 showed relatively poor evidence of in vivo target engagement in either receptor occupancy assays or EEG disturbance. Wake-promoting doses of LSN2463359 and LSN2814617 attenuated deficits in performance induced by the competitive NMDA receptor antagonist SDZ 220,581 in two tests of operant behaviour: the variable interval 30 s task and the DMTP task. These effects were lost if the dose of either compound extended into the range which disrupted performance in the baseline DMTP task. However, the improvements in response accuracy induced by the mGlu? potentiators in SDZ 220,581-treated rats were not delay-dependent and, therefore, perhaps more likely reflected optimization of general arousal than specific beneficial effects on discrete cognitive processes. The systematic profiling of LSN2463359 and LSN2814617 alongside other previously described molecules will help determine more precisely how mGlu? potentiator pharmacology might provide therapeutic benefit. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
SCZ Keywordsschizophrenia
8J. Pharmacol. Exp. Ther. 2014 Dec 351: 642-53
PMID25277141
TitleNeurophysiologic and antipsychotic profiles of TASP0433864, a novel positive allosteric modulator of metabotropic glutamate 2 receptor.
AbstractExcess glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, and the activation of metabotropic glutamate 2 (mGlu2) receptor may exert antipsychotic effects by normalizing glutamate transmission. In the present study, we investigated the neurophysiologic and antipsychotic profiles of TASP0433864 [(2S)-2-[(4-TERT-butylphenoxy)methyl]-5-methyl-2,3-dihydroimidazo[2,1-b][1,3]oxazole-6-carboxamide], a newly synthesized positive allosteric modulator (PAM) of mGlu2 receptor. TASP0433864 exhibited PAM activity at human and rat mGlu2 receptors with EC50 values of 199 and 206 nM, respectively, without exerting agonist activity at rat mGlu2 receptor. TASP0433864 produced a leftward and upward shift in the concentration-response curve of glutamate-increased guanosine 5'-O-(3-[(35)S]thio)triphosphate binding to mGlu2 receptor. In contrast, TASP0433864 had negligible activities for other mGlu receptors, including mGlu3 receptor, and did not have any affinity for other receptors or transporters. In hippocampal slices, TASP0433864 potentiated an inhibitory effect of DCG-IV [(2S,2'R,3'R)-2-(2',3'-dicarboxylcyclopropyl)glycine], a mGlu2/3 receptor agonist, on the field excitatory postsynaptic potentials in the dentate gyrus, indicating that TASP0433864 potentiates the mGlu2 receptor-mediated presynaptic inhibition of glutamate release. Moreover, TASP0433864 inhibited both MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate]- and ketamine-increased cortical ? band oscillation in the rat cortical electroencephalogram, which have been considered to reflect the excess activation of cortical pyramidal neurons. The inhibitory effect of TASP0433864 on cortical activation was also observed in the mouse 2-deoxy-glucose uptake study. In a behavioral study, TASP0433864 significantly inhibited both ketamine- and methamphetamine-increased locomotor activities in mice and rats, respectively. Collectively, these findings indicate that TASP0433864 is a selective mGlu2 receptor PAM with antipsychotic activity, and the attenuation of excess glutamatergic neurotransmission may be involved in the action of TASP0433864.
SCZ Keywordsschizophrenia
9Psychopharmacology (Berl.) 2015 Mar 232: 1107-22
PMID25323624
TitleNegative versus positive allosteric modulation of metabotropic glutamate receptors (mGluR5): indices for potential pro-cognitive drug properties based on EEG network oscillations and sleep-wake organization in rats.
AbstractEvidence is emerging that positive and negative modulation of the metabotropic glutamate (mGluR5) receptors has the potential for treating cognitive deficits and neuroprotection associated with psychiatric and neurodegenerative diseases, respectively. Sleep and synchronisation of disparate neuronal networks are critically involved in neuronal plasticity, and disturbance in vigilance states and cortical network connectivity contribute significantly to cognitive deficits described in schizophrenia and Alzheimer's disease. Here, we examined the circadian changes of mGluR5 density and the functional response to modulation of mGluR5 signaling.
The current study carried out in Sprague-Dawley rats quantified the density of mGluR5 across the light-dark cycle with autoradiography. The central activity of mGluR5 negative allosteric modulators (2-methyl-6-(phenylethynyl)pyridine (MPEP) and [(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and positive allosteric modulators (S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone (ADX47273) and (7S)-3-TERT-butyl-7-[3-(4-fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyridine (LSN2814617) was examined on sleep-wake architecture. The functional effect of mGluR5 modulation on cortical networks communication was described in freely moving animals.
The density of mGluR5 in the striatal, cortical, hippocampal and thalamic structures was unchanged across the light-dark cycle. Allosteric blockade of mGluR5 consistently consolidated deep sleep, enhanced sleep efficiency and elicited prominent functional coherent network activity in slow theta and gamma oscillations. However, allosteric activation of mGluR5 increased waking, decreased deep sleep and reduced functional network connectivity following the activation of slow alpha oscillatory activity.
This functional study differentiates the pharmacology of allosteric blockade of mGluR5 from that of allosteric activation and suggests that mGluR5 blockade enhances sleep and facilitates oscillatory network connectivity, both processes being known to have relevance in cognition processes.
SCZ Keywordsschizophrenia
10Am. J. Med. Genet. B Neuropsychiatr. Genet. 2016 Apr 171: 317-24
PMID26799699
TitleVariants in TERT influencing telomere length are associated with paranoid schizophrenia risk.
Abstractschizophrenia is one of the most severe psychiatric disorders, with a high heritability of up to 80%. Several studies have reported telomere dysfunction in schizophrenia, and common variants in the telomerase reverse transcriptase (TERT) gene. TERT is a key component of the telomerase complex that maintains telomere length by addition of telomere repeats to telomere ends, and has repeatedly shown association with mean lymphocyte telomere length (LTL). Thus, we hypothesized that TERT may be a novel susceptibility gene for schizophrenia. Using a Taqman protocol, we genotyped eight tag SNPs from the TERT locus in 1,072 patients with paranoid schizophrenia and 1,284 control subjects from a Chinese Han population. We also measured mean LTL in 98 cases and 109 controls using a quantitative PCR-based technique. Chi-square tests showed that two SNPs, rs2075786 (P?=?0.0009, OR?=?0.76, 95%CI?=?0.65-0.90) and rs4975605 (P?=?0.0026, OR?=?0.73, 95%CI?=?0.60-0.90), were associated with a protective effect, while rs10069690 was associated with risk of paranoid schizophrenia (P?=?0.0044, OR?=?1.23, 95%CI?=?1.07-1.42). Additionally, the rs2736118-rs2075786 haplotype showed significant association with paranoid schizophrenia (P?=?0.0013). Moreover, mean LTL correlated with rs2075786 genotypes was significantly shorter in the patient group than the control group. The present results suggest that the TERT gene may be a novel candidate involved in the development of paranoid schizophrenia. © 2016 Wiley Periodicals, Inc.
SCZ Keywordsschizophrenia