1Schizophr. Res. 2010 Jun 119: 198-209
PMID20347576
TitleExpression of the NR2B-NMDA receptor trafficking complex in prefrontal cortex from a group of elderly patients with schizophrenia.
AbstractDysregulated glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia. In particular, hypofunction of the NMDA glutamate receptor has been proposed to play an important role in mediating cognitive deficits in patients. The two NMDA receptor subunits, NR2A and NR2B, are distinctly regulated during development and are associated with different intracellular pathways and functions, which suggest that these receptors play separate roles in the control of higher cognitive functions such as learning and memory. Trafficking of the NR2B subunit-containing receptor is regulated by a microtubule-associated trafficking complex consisting of the KIF17, APBA1, CASK, and mLin7 proteins. Several studies have demonstrated an integrated functional regulation of this trafficking complex with NR2B receptor subunit expression, which in turn has been linked to higher cognitive functions. In the present work, we investigated whether expression of this NR2B-associated trafficking complex might be abnormal in schizophrenia. We analyzed the expression of KIF17, APBA1, CASK, mLin7A and mLin7C in postmortem brain from patients with schizophrenia a comparison group. Analysis of transcripts for all of these proteins revealed particularly prominent expression in cortical layer III and layer IV, which overlapped with NR2B but not NR2A transcripts. We found altered expression of transcripts for the CASK, ABPA1, and mLin7 molecules and the CASK, mLin7 proteins, suggesting that NR2B-containing NMDA receptor transport could be selectively compromised in schizophrenia, and that these changes likely involve altered NR2B function in a subset of cortical neurons.
SCZ Keywordsschizophrenia
2Cell Stem Cell 2015 Sep 17: 316-28
PMID26279266
TitleHuman Neuropsychiatric Disease Modeling using Conditional Deletion Reveals Synaptic Transmission Defects Caused by Heterozygous Mutations in NRXN1.
AbstractHeterozygous mutations of the NRXN1 gene, which encodes the presynaptic cell-adhesion molecule neurexin-1, were repeatedly associated with autism and schizophrenia. However, diverse clinical presentations of NRXN1 mutations in patients raise the question of whether heterozygous NRXN1 mutations alone directly impair synaptic function. To address this question under conditions that precisely control for genetic background, we generated human ESCs with different heterozygous conditional NRXN1 mutations and analyzed two different types of isogenic control and NRXN1 mutant neurons derived from these ESCs. Both heterozygous NRXN1 mutations selectively impaired neurotransmitter release in human neurons without changing neuronal differentiation or synapse formation. Moreover, both NRXN1 mutations increased the levels of CASK, a critical synaptic scaffolding protein that binds to neurexin-1. Our results show that, unexpectedly, heterozygous inactivation of NRXN1 directly impairs synaptic function in human neurons, and they illustrate the value of this conditional deletion approach for studying the functional effects of disease-associated mutations.
SCZ Keywordsschizophrenia
3J. Neurosci. 2015 Jun 35: 8986-96
PMID26085624
TitleANKS1B Gene Product AIDA-1 Controls Hippocampal Synaptic Transmission by Regulating GluN2B Subunit Localization.
AbstractNMDA receptors (NMDARs) are key mediators of glutamatergic transmission and synaptic plasticity, and their dysregulation has been linked to diverse neuropsychiatric and neurodegenerative disorders. While normal NMDAR function requires regulated expression and trafficking of its different subunits, the molecular mechanisms underlying these processes are not fully understood. Here we report that the amyloid precursor protein intracellular domain associated-1 protein (AIDA-1), which associates with NMDARs and is encoded by ANKS1B, a gene recently linked to schizophrenia, regulates synaptic NMDAR subunit composition. Forebrain-specific AIDA-1 conditional knock-out (cKO) mice exhibit reduced GluN2B-mediated and increased GluN2A-mediated synaptic transmission, and biochemical analyses show AIDA-1 cKO mice have low GluN2B and high GluN2A protein levels at isolated hippocampal synaptic junctions compared with controls. These results are corroborated by immunocytochemical and electrophysiological analyses in primary neuronal cultures following acute lentiviral shRNA-mediated knockdown of AIDA-1. Moreover, hippocampal NMDAR-dependent but not metabotropic glutamate receptor-dependent plasticity is impaired in AIDA-1 cKO mice, further supporting a role for AIDA-1 in synaptic NMDAR function. We also demonstrate that AIDA-1 preferentially associates with GluN2B and with the adaptor protein Ca(2+)/calmodulin-dependent serine protein kinase and kinesin KIF17, which regulate the transport of GluN2B-containing NMDARs from the endoplasmic reticulum (ER) to synapses. Consistent with this function, GluN2B accumulates in ER-enriched fractions in AIDA-1 cKO mice. These findings suggest that AIDA-1 regulates NMDAR subunit composition at synapses by facilitating transport of GluN2B from the ER to synapses, which is critical for NMDAR plasticity. Our work provides an explanation for how AIDA-1 dysfunction might contribute to neuropsychiatric conditions, such as schizophrenia.
SCZ Keywordsschizophrenia